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Abstract— Recently, deep learning has represented an important
research trend in human activity recognition (HAR). In particular,
deep convolutional neural networks (CNNs) have achieved state-of-
the-art performance on various HAR datasets. For deep learning,
improvements in performance have to heavily rely on increasing
model size or capacity to scale to larger and larger datasets, which
inevitably leads to the increase of operations. A high number of
operations in deep leaning increases computational cost and is
not suitable for real-time HAR using mobile and wearable sensors.
Though shallow learning techniques often are lightweight, they
could not achieve good performance. Therefore, deep learning
methods that can balance the trade-off between accuracy and com-
putation cost is highly needed, which to our knowledge has seldom
been researched. In this paper, we for the first time propose a com-
putation efficient CNN using conditionally parametrized convolution
for real-time HAR on mobile and wearable devices. We evaluate the
proposed method on four public benchmark HAR datasets consisting of WISDM dataset, PAMAP2 dataset, UNIMIB-SHAR
dataset, and OPPORTUNITY dataset, achieving state-of-the-art accuracy without compromising computation cost. Various
ablation experiments are performed to show how such a network with large capacity is clearly preferable to baseline while
requiring a similar amount of operations. The method can be used as a drop-in replacement for the existing deep HAR
architectures and easily deployed onto mobile and wearable devices for real-time HAR applications.

Index Terms— Human activity recognition, deep learning, convolutional neural networks, conditionally parametrized
convolution, wearable devices, mobile phone.

I. INTRODUCTION

HUMAN activity recognition (HAR) has become an
important research area in ubiquitous computing

and human computer interaction, which has a variety of
applications including health care, sports, interactive gaming,
and monitoring systems for general purposes. With the rapid
technical advancement of mobile phones and other wearable
devices, various motion sensors have been placed at different
body positions in order to collect data and infer human activity
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details [1]. Unlike video or wireless signals based method,
mobile phone and wearable devices are more popular, which
are not location dependent, easy to deploy and have no any
health hazard caused by radiation. As we have known, mobile
phones have become an important part of human’s daily life
and can be carried around almost every day. Therefore, the
use of data generated by mobile phones and other wearable
sensors has dominated the research landscape in HAR, which
provides obvious advantages over other sensor modalities [2].
On the whole, mobile and wearable sensor based methods
provide a better alternative to real-time implementation of
HAR applications [3].

On the other hand, sensor based HAR mainly lies in the
assumption that specific body movement can be translated
into characteristic sensor signal pattern, which may be further
classified using machine learning technique [4]. Recently,
deep learning technique outperformed many conventional
machine learning methods, which has represented an
important research trend in HAR [5]. In particular, deep
convolutional neural networks (CNNs) have achieved state-
of-the-art performance on various HAR tasks [6]. For deep
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learning, improvements in performance have to heavily rely
on increasing model size or capacity to scale to larger and
larger datasets [7]. However, increasing model size or capacity
inevitably leads to the increase of operations or computation
cost. Building larger CNN may result in higher performance,
but lead to the need for more resources such as computational
power that is expensive for mobile and wearable devices.
Therefore, deploying optimal deep models for mobile and
wearable HAR applications are often impractical, which
limits their wide use for real-time HAR applications with
strict latency constraints.

At present, there have been hundreds of brands of mobile
phones, which have drastically different inference time even
for the same network architecture (Yu et al. [8]), as illustrated
in Table I. Given the same response time, there is often
a higher accuracy for high-end mobile phones that can
implement larger models. Instead, low-end mobile phones
that are hard to implement larger models have to sacrifice
accuracy in order to maintain the same latency. For even the
same device, the computational power still may vary due
to potential consumption caused by background APPs that
tend to reduce the available computing budget (e.g., a mobile
phone that works in a power-saving mode). Therefore, it
deserves further research to develop computation efficient
CNN to perform real-time HAR using mobile and wearable
sensors.

TABLE I: Runtime of MobileNet v1 for image classification
on different devices.

Google
Pixel

LG
Nexus 5

Samsung Galaxy
S3

RunTime 116ms 332ms 553ms

Without loss of generality, there are two ways to design
computation efficient CNN for mobile and wearable HAR ap-
plications. For the first case, using fewer convolutional layers
or decreasing the size of existing convolutions may lead to the
decrease of computation cost. Thus, current computationally
efficient models often are smaller, which have suboptimal
performance with fewer parameters on mobile deployment
[9]. For the second case, decreasing the size of the input to
convolution also can proportionally decrease computation cost.
Actually, HAR using mobile phones and wearable sensors
can be seen as a classic multivariate time series classification
problem, which makes use of sliding window [10] to segment
time series sensor signals and extracts discriminative features
from them to be able to recognize activities by utilizing a
classifier. Intuitively, using smaller sliding window can yield
faster inference. However, in this case it often is hard to obtain
most suitable size for feature extraction of HAR, which make
CNNs be not able to offer best results. Therefore, as indicated
in both cases, current computationally efficient models often
are suboptimal for HAR. Recently, there has been rising
research interest in conditional computation [11], [12], whose
goal is to increase model capacity or performance without a
proportional increase in computation cost. In particular, Yang
et al. [13] proposed an idea of conditionally parameterized
convolution (CondConv), which can easily be optimized by

gradient descent. According to our research motivation, re-
placing conventional convolutions with CondConv could be
one feasible step to realize efficient inference for mobile and
wearable HAR applications without compromising computa-
tion cost.

In this paper, we propose a new CNN using the idea
of CondConv for HAR applications with strict latency con-
straints, which aims to increase model capacity or performance
while maintaining efficient inference to better serve these real-
time HAR applications on mobile and wearable devices. To
the best of our knowledge, how to build an accurate CNN for
HAR without sacrificing computational cost has been rarely
explored, and this paper is the first try to develop conditional-
computation CNN for real-time HAR in ubiquitous and wear-
able computing area. To be specific, we replace the standard
convolution W ∗ x with CondConv which is a linear combi-
nation of n experts (α1 ·W1 + α2 ·W2 + ...+ αn ·Wn) ∗X ,
where α1,...,αn are weight functions of the input learned
through gradient descent. The standard convolution W ∗ x
requires expensive computation cost as it needs to be computed
at many different positions within the input. In comparison
with standard convolution, increasing the number of experts
in the CondConv is able to greatly improve the representing
ability of CNN without compromising computation cost, as
all the experts are combined only once per input. Our main
contributions are summarized as follows:

• Firstly, we for the first time present a novel CNN using
the idea of CondConv for HAR applications with strict
latency constraint, which may increase model capacity or
performance while maintaining efficient inference speed
in order to better serve these real-time HAR applications
in mobile and wearable devices.

• Secondly, compared with ordinary convolution, the pro-
posed method is able to effectively improve activity
recognition accuracy via increasing the number of ex-
perts. The experimental results show that there is a signif-
icant performance gain on four benchmark HAR datasets
consisting of WISDM dataset [14], PAMAP2 dataset
[15], UNIMIB-SHAR dataset [16], and OPPORTUNITY
dataset [17] at almost the same computation cost.

• Finally, various ablation experiments are performed to
analyze the effect of several important hyper-parameters
such as the number of experts. We visually show the
distribution of routing weights activated by activity ex-
amples in the convolutional layer. The actual inference
speed is measured on a smartphone with an Android
platform, which indicates its advantage with regard to
typical challenges for real-time HAR in ubiquitous and
wearable computing scenario.

The rest of this paper is organized as follows. Section II
presents the related works in activity recognition and condi-
tional computation. Section III details the proposed framework
for HAR. In Section IV, we first describe the HAR dataset
used and experimental setup, and then present the experimental
result comparison and analysis from several aspects. The last
section concludes this study with a brief summary and points
out future research work.
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II. RELATED WORKS

In recent years, deep learning has become popular in mobile
and wearable sensors based HAR, due to their superior perfor-
mance. In particular, CNN is one of the most researched deep
learning techniques which can automatically extract features
and identify the hidden or unknown activity patterns from raw
time series sensor data. A number of CNN architectures for the
use of HAR have been developed by researchers. For exam-
ple, Zeng et al. [18] firstly proposed a shallow CNN based
approach to recognize activities, which has achieved state-
of-the-art performance in three public HAR datasets. Yang
et al. [6] developed a new architecture of CNN, in which the
convolution filters are applied along the temporal dimension
for each sensor and all feature maps for different sensors are
unified as an input for a classifier. CNNs that combine other
fusion techniques were also proposed. Ordóñez et al. [19]
proposed an architecture of DeepConvLSTM, which replaced
the fully connected layer of CNN with Long Short Term
Memory (LSTM) to capture temporal relationship contained in
time series sensor data. Wang et al. [20] proposed an attention-
based CNN which is able to enhance interesting activity in
the weakly supervised learning scenarios. Ignatov et al. [21]
proposed a CNN which combines local feature extraction
with simple statistical features that preserve global information
about the time series sensor data. Teng et al. [22] developed
a layer wise training CNN for HAR with local loss, which is
able to achieve remarkable performance with less parameters
on various HAR application domains. Guo et al. [23], [24]
proposed an idea of dual-ensemble class imbalance learning,
where two ensemble models are nested each other to handle
an imbalance classification problem in HAR scenario. On the
whole, deep CNNs have yielded excellent results in terms of
recognition accuracy, but often need a lot of computation cost,
which is infeasible for mobile and wearable HAR applications
that have strict latency constraints.

In addition, we introduced some related literatures such as
model compression to enrich the related works. In order to
accelerate inference while maintaining satisfactory accuracy,
one main research direction is to prune network connections
[25], or channels [26], in a pre-trained network, which could
reduce redundant connections and meanwhile preserving clas-
sification performance. Network quantization, [27], [28], or
factorization [29] are also introduced in many literatures in
order to speed up inference, which can reduce redundant
calculations. Knowledge distilling methods [30] are able to
transfer knowledge from larger networks into smaller ones,
which enables smaller networks to perform inference while
preserving comparable accuracy. Overall, above these methods
inevitably need a large pre-trained network. Comparing with
video data that is easier to be understood and annotated by
humans, it is much harder to accurately segment and label an
interesting activity from a long sensor sequence. Therefore,
they are very infeasible for activity recognition tasks, due to
the scarcity of sensor data.

Due to the growing number of hyper-parameters, designing
computation efficient CNN for HAR applications becomes in-
creasingly difficult. In another line of research, recent research

effort on visual recognition or natural language processing
has been shifting to conditional computation, which aims to
increase model capacity or performance without a proportional
increase in computation cost. For example, Wu et al. [31] pro-
posed BlockDrop method which uses reinforcement learning
to dynamically learn discrete routing functions, in order to best
reduce computation cost without decreasing model accuracy.
Mullapudi et al. [32] developed HydraNet model which uses
unsupervised clustering method to choose proper subset of
the entire network architecture to run most efficient inference
on a given input. Shazeer et al. [33] proposed a trainable
gating network by introducing a sparsely-gated mixture-of-
experts layer, which is able to determine a sparse combination
of different experts to use for each example. However, these
aforementioned approaches in conditional computation often
require to learn discrete routing decisions of different experts
across every example, which is hard to train using gradient
descent and not suitable for CNN based HAR applications.
Recently, Yang et al. [13] proposed CondConv to challenge the
fundamental assumption that the same convolutional kernels
should be shared for each example, which enables different
expert convolution kernels to focus on their specialized exam-
ples. In particular, the CondConv can easily be trained with
gradient descent without requiring access to discrete routing of
each example. Despite the success of conditional computation,
their primary use mainly lies in imagery or natural language
processing tasks, which has never been used to perform HAR.
The increasing demands for running efficient deep neural
networks for HAR on mobile and wearable devices encourage
our current study. In the next section, we will describe the
CondConv and then present the entire architecture of deep
HAR applications using CondConv.

III. MODEL

In this section, we will discuss our new CNN architecture
using CondConv to handle the unique challenges existed in
mobile and wearable HAR applications. An overview figure
of the proposed HAR system is presented in abstract. For
sensor based HAR, we have to firstly deal with multiple chan-
nels of time series sensor signals, in which the convolution
need to be applied along temporal dimension and then be
shared or unified among multiple different sensors. Due to
implementational simplicity and no need of preprocessing, the
sliding window technique is ideally suitable for real-time HAR
applications, which has been widely used to segment time
series sensor signal into a collection of smaller data pieces
as an input for CNN. Hence an instance handled by CNN
typically corresponds to a two-dimensional matrix with r raw
samples representing the number of samples per window, in
which each sample contains multiple sensor attributes recorded
at time t. Though in any case the sensor signal stream must
be segmented into data windows, they can be of a continuous
nature. Thus, an overlap between adjacent windows is tolerated
to preserve the continuity of activities. Intuitively, decreasing
the size of sliding window leads to a faster activity inference,
as well as a reduced need for computation cost. To make
fair comparison, we still select the same window size that
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is preferably used in previous state-of-the-art works.
Our main research motivation is to realize computation

efficient CNN using CondConv for the practical use of HAR
on mobile and wearable devices. Without loss of generality,
the baseline CNN is typically comprised of four units: (i) a
convolution layer with a set of learned kernels that convolve
the input along temporal dimension or the previous layer’s
output; (ii) a ReLU layer with activation function max(x,0)
that maps the previous layer’s output; (iii) a max pooling
layer that subsamples via finding the maximum feature map
across a range of local temporal neighborhood; (iv) a Batch
Normalization(BN) [34] layer used to normalize the values of
different feature maps from the previous layer. Without loss
of generality, we denote a standard convolution as:

W ∈ RC×C
′
×kh×kw (1)

with the input feature map X ∈ RC×h×w and the output fea-
ture map Y ∈ RC

′
×h

′
×w

′

, where (h,w), (h
′
, w

′
) and (kh, kw)

denote the heights and the widths for the input, output, and
convolutional filter respectively. Following the settings of Yang
et al. [13], we replace the standard convolution kernels used in
convolutional layers with a linear combinations of n experts:

Output = σ ((α1 ·W1 + ...+ αn ·Wn) ∗X) (2)

in which σ is ReLU activation function and n is the number of
experts. The dimension of each kernel Wi is still the same to
that in original convolution. Obviously, if the scalar weight a
is constant for all examples, a CondConv layer has almost the
same capacity with a standard convolutional layer. To avoid the
case, the weight αi can be computed using a routing function
ri(x):

ri(x) = S (GlobalAveragePool (x )R) (3)

Here S is Sigmoid activation function and GlobalAverage-Pool
is global average pooling layer. As a result, αi is identical to
ri(x), i.e.,αi=ri(x). R is a dense layer that maps the pooled
inputs to n expert weights with the parameters learned across
lots of training examples. To be more specific, the Eq.3 can
be expressed as:

αi = S

Wfc1 ×
1

hw

∑
i∈h,j∈w

Xc,i,j

 (4)

Therefore, the weights of n experts are example-dependent,
which enable different experts to specialize in their interesting
examples. That is to say, the weights of n experts are different
across all examples, in which each individual example can be
processed with different weights.

From the perspective of matrix theory, a CondConv layer
can be equally expressed as:

Output = σ (α1 · (W1 ∗ x) + ...+ αn · (Wn ∗ x)) (5)

which is more computationally expensive. As a comparison,
the CondConv for each example can be computed as a linear
combination of n experts, and then only one expensive con-
volution needs to be computed. To be specific, each additional
expert requires only one additional multiply-add operation,

which suggests that we can increase model capacity or per-
formance via increasing the number of experts, with only a
very small increase in computation cost. Though increasing the
number of experts inevitably requires more memory resource,
it is often affordable due to the rapid technical advancement
of mobile phones and other wearable devices. Hence the
CondConv is able to achieve higher inference performance
without compromising computation cost, which provides a
better alternative to serve mobile and wearable HAR that has
strict latency constrains. With the increase in the number of
experts, the CondConv is able to increase model capacity,
which is also prone to overfitting. To avoid overfitting, we
additionally introduce data augmentation via improving the
overlapping rate of sliding windows, as well as randomly
dropping out to ensure sufficient regularization.

IV. EXPERIMENT

We evaluate the proposed method on four public
benchmark HAR datasets consisting of WISDM dataset
[14], PAMAP2 dataset [15], UNIMIB-SHAR dataset [16],
and OPPORTUNITY dataset [17], which are recorded with
different sampling rates, number of sensors and kinds of
activities. In terms of accuracy and FLOPs, we compare our
method against the baseline CNN, as well as other state-of-
the-art techniques that have been widely used in the HAR
tasks. To make fair comparison, we restrain the baseline CNN
with the same hyperparameters and regularization methods
as the CondConv model. For each baseline architecture, we
replace standard convolution layer with CondConv Layer
to evaluate CondConv via increasing the number of experts
per layer. To be specific, model performance is evaluated
via varying the number of experts in the CondConv layer
from 1, 2, 4, 8, 16. To fully exert the effect of CondConv,
we additionally replace the fully connected layer with a
1x1 CondConv layer in some cases. For each CondConv
layer, the BN layer is inserted right after a convolutional
layer, but before feeding into ReLU activation [35]. We
introduce the detailed parameter settings such as the number
of convolution layers and kernel size in Table II. To determine
the routing weight functions, we experiment with different
activation functions including Tanh, Sigmoid, Softmax,
LReLU, ELU and ReLU, in which the results suggest that
Sigmoid significantly outperforms other activation functions.
Various ablation experiments are performed to further analyze
the effect of CondConv layer across different examples at
different depths in the network.

Models are trained in a supervised way, and the model
parameters are optimized by minimizing the cross-entropy
loss function with mini-batch gradient descent using an
Adam optimizer. Training is done for at least 400 epochs.
The epoch that achieves the best performance is selected
and the corresponding model is applied to test set. For the
CondConv, increasing the number of experts will inevitably
lead to the increase of parameter count, which requires
enough examples to train the model. The data augmentation
and dropout technique are used for the CondConv model with
large capacity, which aims to ensure sufficient regularization.
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TABLE II: SIMPLE DESCRIPTION OF NEURAL NETWORK PARAMETER

Layers
Dataset

WISDM PAMAP2 UniMib-SHAR OPPORTUNITY

conv filters stride conv filters stride conv filters stride conv filters stride
Layers 1 (6,1) 64 (2,1) (6,2) 64 (3,1) (6,1) 128 (2,1) (5,7) 64 (1,2)
Layers 2 (6,1) 128 (2,1) (6,2) 128 (3,1) (6,1) 256 (2,1) (5,7) 64 (1,2)
Layers 3 (6,1) 384 (2,1) (6,2) 256 (3,1) (6,2) 384 (2,1) (5,7) 128 (1,2)
Layers 4 (1,1) 6 (1,1) - - - (1,1) 17 (1,1) (5,7) 128 (2,3)
Layers 5 - - - - - - - - - (5,7) 256 (2,3)

First, data augmentation technique is added via improving
the overlapping rate of sliding time windows. We use smaller
sliding step length to segment time series sensor signal, which
is able to generate more training examples. The proposed
CondConv model has the same experiment settting with
that of the baseline. Second, dropout technique is applied to
avoid overfitting during the training stage. However, normal
combination of dropout and BN technique often lead to worse
results unless some conditioning is done to prevent the risk
of variance shifts. As suggested by Li et al. [36], the worse
performance caused by the variance shift only happens when
there exists a dropout layer before a BN layer. Thus, we
insert only one dropout layer right before the final Softmax
layer. All the experiment in this paper are implemented in
Python using TensorFlow backend on a machine with an
Intel i7-6850K CPU, 64GB RAM and NVIDIA RTX 2080
Ti GPU. In addition, we test the actual inference speed on a
smartphone with an Android platform.

A. Experiment Results and Performance Comparison

1) The WISDM dataset [14] : The WISDM dataset used for
the experiment is provided by the Wireless Sensor Data Min-
ing(WISDM) Lab, which contains various human activities
with 6 attributes: user, activity, timestamp, x-acceleration, y-
acceleration, z-acceleration. The smartphones were placed in
a front leg pocket of each dominant, in which one triaxial
accelerometer embedded in smartphones with an Android
platform was used to generate time series data at a constant
sampling rate of 20Hz. The activities were collected from
29 subjects and each subject performed 6 distinctive human
activities consisting of walking, jogging, walking upstairs,
walking downstairs, sitting and standing .

In the experiment, the sliding window technique is utilized
to segment the time series accelerometer signals. The size of
sliding time window is set to 10s and a 95% overlapping rate is
used, which equals to 0.5s of the sliding step length. The whole
WISDM dataset is partitioned into two parts, in which 70% is
randomly selected to generate training examples and the rest
test examples. The shorthand description of the baseline CNN
architecture is C(64)-C(128)-C(384)-FC-Sm, which consists of
three convolutional layers and one fully connected layer. To
be specific, each convolution begins with Conv-BN-ReLU and
then another one. We use a 1x1 CondConv layer to replace
the fully connected classification layer. The model will be
trained using mini-batches with a size of 210. Adam is used for

optimization. The initial learning rate is set as 0.0001, which
will be reduced by a factor of 0.1 after each 50 epochs.

Fig. 1: Accuracy on WISDM dataset with different nums of
experts

In Fig.1, we evaluate our model performance using Cond-
Conv via varying the number of experts. As can be seen
in the figure, there is a steady increase in accuracy on test
data with increasing the number of experts. During training
stage, increasing the number of experts tends to make the
model converge faster. In terms of accuracy and FLOPs, Table
III demonstrates the classification results compared with the
baseline and state-of-the-arts. The number of experts that
obtains the best accuracy on test set are n=1 (98.12%),
n=2 (98.94%), n=4 (99.12%) and n=8 (99.60%). From the
results, we can see that the models with CondConv (n > 1)
consistently perform better than their counterparts without
CondConv ( n=1). As a reference, the baseline has an accuracy
of 98.12% at the cost of 30.01 MFLOPs. The CondConv
model has 99.60% classification accuracy with a computation
complexity of 31.69 MFLOPs. There is an improvement of
1.48% in accuracy with a very small increase in FLOPs. To
the best of our knowledge, the best performance on the dataset
was 98.97% using a federated learning system (Xiao et al.
[37]). The second best result was 98.82% using a CNN with
local loss (Teng et al. [22]). Our result with CondConv is best
reported, which surpasses recent state-of-the-art results. The
results indicate that the proposed model demonstrates state-
of-the-art performance at almost the same computational cost.

2) The PAMAP2 dataset [15]: The physical activity mon-
itoring dataset is an open source dataset available at UCI
repository, which contains extensive physical activities: both
everyday household and sports performed by 9 participants
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TABLE III: Performance on WISDM Dataset with Different
nums of Experts

Model Test Acc FLOPs

CondConv(with n=1) 98.12% 30.01M
CondConv(with n=2) 98.94% 30.25M
CondConv(with n=4) 99.12% 30.73M
CondConv(with n=8) 99.60% 31.69M

Teng et al.2020 [22] 98.82% -
Xiao et al.2020 [37] 98.97% -
Noori et al.2020 [38] 98.7% -
Ravi et al.2016 [39] 98.20% -

wearing 3 inertial measurement units (IMUs) and a heart rate
monitor. The IMU sensors were placed over the chest, wrist
and side’s ankle on the dominant. The participants were asked
to perform 12 protocol activities such as stand, sit, ascend
stairs, descend stairs, rope jumping and run. In addition, some
of them performed 6 optional activities such as watching TV,
car driving, house cleaning and playing soccer. The sampling
rate of heart rate monitor is 9Hz, and the sampling rate of
IMUs is 100Hz; i.e. data is recorded 100 times per second.
For the use of HAR, we subsample the IMU signals from
100Hz to 33.3Hz.

As indicated, HAR is typically computed over a sliding
window. The sliding window length is usually fixed. Different
window lengths are selected by authors in various studies. To
compare the result with other works, we selecte window size of
512 (5.12 seconds) to slide one instance at a time, which leads
to a 78% overlap with around 473k samples. All samples are
normalized into zero mean and unit variance. We randomly
select 70% of the data in each class for training, the rest
for test. The shorthand description of the baseline CNN is
described as C(64)-C(128)-C(256)-FC-Sm, which consists of
three convolutional layers and one fully connected layer. BN
is applied before ReLU activation. The batch size is set to 204
and Adam optimization [40] is used for training. The learning
rate is set to 0.001, 0.0005 and 0.00001 during 12.5%, 25%
and 62.5% of the total training time.

Fig. 2: Accuracy on Pamap2 dataset with different nums of
experts

Keeping all hyper-parameters except the number of experts

the same, we train the model using CondConv to see if
it could further improve the results. Fig.2 shows the effect
of increasing number of experts on test accuracy using the
CondConv architectures with n=1,n=2,n=4,n=8 and n=16. It
can be seen that the model performance consistently increases
when the number of experts is greater than 1. Under a variety
of n , we compare classification accuracy and FLOPs with
the baseline of n=1, as well as the state-of-the-arts on this
dataset. Results from Table IV , it can be seen that the
number of experts that achieves the best results on test set are
n=1(89.97%), n=2(91.8%), n=4(92.7%), n=8(93.79%) and
n=16(94.01%) respectively. Our method using CondConv with
n=16 surpasses the baseline by 4.04%, accompanied by a very
small increase in computational cost. As can be seen in Table
IV, the best published result on this dataset using CNN is to
our knowledge 91.4% (Yang et al. [41]). The second best result
was 91% designing a smartphone inertial accelerometer-based
architecture (Wan et al. [42]). The proposed method surpasses
the state-of-the-art result by a large margin. This result implies
that we can exploit this CondConv as a drop-in replacement
of standard convolution to produce better results with only a
small increase in computational cost.

TABLE IV: Performance on PAMAP2 Dataset with Different
nums of Experts

Model Test Acc FLOPs

CondConv(with n=1) 89.97% 212.57M
CondConv(with n=2) 91.80% 213.35M
CondConv(with n=4) 92.70% 215.69M
CondConv(with n=8) 93.79% 218.76M
CondConv(with n=16) 94.01% 224.86M

Yang et al.2018 [41] 91.40% -
Wan et al. 2020 [42] 91.00% -
Zeng et al.2018 [43] 89.96% -
Chen et al.2019 [44] 90.33% -

3) The UNIMIB-SHAR dataset [16]: UNIMiB-SHAR is a
new dataset including 11771 samples designed for the use
of HAR and fall detection. In a supervised condition, the
30 subjects of ages ranging from 18 to 60 years wearing a
Samsung Galaxy Nexus I9250 smartphone were instructed
to perform activities. Each activity was performed 2 or 6
times. The half of all participants placed the smartphone in
their left pocket, and the other half in their right pocket.
An embedded Bosh BMA220 3D accelerometer was used
to generate examples. The whole dataset consists of 17 fine
grained classes which is further grouped into two coarse
grained classes: one containing samples of 9 types of activities
of daily living(ADLs) and the other containing samples of 8
types of falls.

For fair comparison, the sliding window with a fixed length
T=151 is selected, which equals to approximately 3s. Since
the accelerometer signals are recorded at a constant sampling
rate of 50 Hz, for each activity, the accelerometer signal is
comprised of 3 vectors of 151 values, one for each acceleration
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direction. Thus, the whole dataset contains 11,771 windows
of size 151*3 in total, which describes both ADLs (7759) and
falls (4192) unequally distributed across activity types. The
architecture of the baseline CNN is C(128)-C(256)-C(384)-
FC-Sm, which contains three convolutional layers and one
fully connected layer. At the last, we use a 1x1 CondConv
layer to replace the final fully connected classification layer.
The samples are split into 70% training and 30% test set.
Adam optimizer [40] is used to train with batch size of 203.
The learning rate is set to 0.0004, 0.00001 and 0.000001
during 12.5%, 25% and 62.5% of the total training time.

Fig. 3: Accuracy on UNIMIB-SHAR dataset with different
nums of experts.

We evaluate the performance of our proposed method with
various number of experts on this dataset. Fig.3 shows that
the test accuracy will increase as the number of experts grows,
which is consistent with our motivation. The CNN that utilizes
CondConv always performs better than its counterpart without
CondConv. Table V demonstrates the performance of our
model compared with the baseline and other state-of-the-arts in
terms of accuracy and FLOPs. It can be seen that our method
achieves 1.32%, 2.74% and 3.16% performance gain over
baseline with n=2, n=4 and n=8 respectively. There is only a
small increase in computation cost. In addition, our model
using CondConv outperforms other state-of-the-arts. When
compared to the best result obtained by Li et al. [45] using
CNN, our method with n=8 achieves 2.34% improvement.
Our CondConv also surpasses the Long et al’s method [46]
by 1.27%, which uses dual residual networks. Under same
parameter configurations, by increasing the number of experts,
the CondConv with sufficient regulation is able to improve the
representation ability of CNN by a large margin.

4) The OPPORTUNITY dataset [17]: The OPPORTUNITY
dataset is publicly available on the UCI Machine Learning
repository, which comprises both static/periodic and sporadic
activities collected with sensors of different modalities inte-
grated into the environment and on the subjects, in a daily
living scenario. The samples were recorded from four subjects
performing morning activities, in which each subject was
asked to perform one ADL session and one drill session.
During the ADL session, without any strict restriction, subjects
performed a session five times with activities such as preparing
and drinking a coffee, preparing and eating a sandwich,
cleaning up, and so on. During the drill session, subjects were
instructed to perform 20 repetitions of a predefined sorted set

TABLE V: Performance of Different Experts for
UNIMIB-SHAR dataset

Model
Data

Magnitude Raw

Test Acc FLOPs Test Acc
CondConv(with n=1) 74.15% 31.53M 86.92%
CondConv(with n=2) 75.47% 31.86M 87.57%
CondConv(with n=4) 76.89% 32.46M 88.25%
CondConv(with n=8) 77.31% 33.57M 88.63%

Li et al.2018 [45] 74.97% - -
Long et al.2019 [46] 76.04% - -
Micucci et al.2020 [16] 65.96% - -
Falco et al.2020 [47] - - 86.00%

of 17 activities.
The dataset has been used in numerous activity recognition

challenges. In this paper, we evaluate our method on the same
subset employed in previous OPPORTUNITY challenge,
which contains the samples collected from 4 subjects with
only on-body sensors. The sensor signals are recorded at a
sampling rate of 30Hz from 12 locations on the dominant
and annotated with 18 mid-level gesture annotations. ADL1,
ADL2 and ADL3 from subject 1, 2 and 3 are used as
training set. ADL4 and ADL5 from subject 4 and 5 are
used as test set. The size of sliding time window and
sliding step length are set to 64 and 8 respectively, which
generates approximately 650k samples. The baseline model
is a deep CNN, whose shorthand description is presented as
C(64)→C(128)→C(256)→C(256)→C(256)→FC→Sm, that
contains five convolutional layers and one fully connected
layer. For this experiment, The initial learning rate is set as
0.0001, which will be reduced by a factor of 0.1 after each
50 epochs using Adam with default parameters. Initial batch
size is set to 204.

Fig. 4: Accuracy on OPPORTUNITY dataset with
different nums of experts.

We characterize the effect of the number of experts em-
ployed to increase model capacity or performance. Fig.4
shows that increasing the number of experts tends to improve
model performance with sufficient regulation. The results of
the proposed method are shown in Table VI, which also
includes a comprehensive list of past published deep learning
techniques employed on this dataset. It can be seen that the
CondConv method systematically performs best among deep
architectures. As can be seen in VI, the best result was Alia
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et al. [48] using Random Forest. The CondConv with the
number of experts larger than 1 consistently outperforms our
baseline, with a very small increase in computational cost. In
the paper, we aim to improve CNN via using more experts.
As a result, our method (n=8) slightly outperforms Alia et al
[48] by 4.09%. The results indicate that more experts (n>1)
can obtain better results at a negligible computational burden.

TABLE VI: Performance of Different Experts for
OPPORTUNITY dataset

Model Test Acc FLOPs

CondConv(with n=1) 77.5% 126.23M
CondConv(with n=2) 78.7% 127.06M
CondConv(with n=4) 80.9% 128.84M
CondConv(with n=8) 81.18% 132.65M

Zeng et al.2014 [18] 76.83% -
Alia et al.2020 [48] 77.09% -

Hammerla et al.2016 [49] 74.50% -
Guan et al.2017 [50] 72.60% -

As shown in Table III-VI, the CondConv algorithm is able
to significantly improve the performance of CNN at a neg-
ligible computation cost. For WISDM, PAMAP2, UNIMIB-
SHAR and OPPORTUNITY datasets, our algorithm outper-
forms baselines (n=1) by a 1.48%, 4.04%, 3.16% and 3.68%
respectively, which is accompanied by only an increase of
5.6%,5.78%,6.47% and 5.08% in terms of FLOPs.

On the whole, compared with image datasets such as
ImageNet, the public HAR datasets are much smaller. In order
to prevent overfitting, we propose data augmentation technique
via using smaller sliding step to segment sensor signal for
improving overlapping rate, which is able to generate more
activity examples. In the case where there are no more than 8
experts, it can be seen that the test accuracy improves as the
number of experts increases. If we further increase the experts
from 8->16->32, it is more prone to overfitting, which often
results in accuracy drop. Actually, the overfitting takes place
because there are no more training examples to train more
experts.

B. The Ablation studies

To better understand model design with the CondConv
block, we conduct several ablation studies to further explore
why the CondConv with larger model capacity is able to
improve accuracy while maintaining efficient inference. Our
ablation experiments are performed on the UNIMIB-SHAR
dataset, and all hyper-parameters are exactly the same as used
above. Finally, we also evaluate the actual inference time of
our model on an Android smartphone.

First, we study the influence of routing weights across
different classes of activities at three different depths in the
network. As mentioned above, if all the experts have the
same routing weight for each example, the CondConv will
degenerate into standard convolutions. Thus, all the experts

Fig. 5: Mean routing weights for three classes across the
UNIMIB-SHAR dataset at three different depths

are example-dependent, and each individual example can
yield different activation weights. We apply the CondConv in
all convolutional layers as well as the final fully connected
classification layer. Results are shown in Fig.5. It can be seen
that the value discrepancy is increased layer by layer. For
shallow layers, the distributions of routing weights of different
experts are very close across classes, while in deep layers
they are diverse. That is to say, the experts are more class
specific or sensitive to high-level features, which suggests
that there is no significant performance improvement if the
CondConv layer is applied near the input of the network. In
particular, we also find that the examples from the similar
activities such as StandingUpFL and StandingUpFS tend to
follow very close distribution.

Next, to demonstrate the superiority of our method, we
use the CondConv to compute the confusion matrices on the
UNIMIB-SHAR dataset. As can be seen in Fig.6, for the
similar activities such as StandingUpFL and StandingUpFS,
the baseline CNN made 31 errors, while the CondConv in
case of n = 8 misclassified only 17 activities. Though the
experts activated by the similar activities follow almost the
same distribution, their combination is still able to offer
better results, which indicates that multiple experts are often
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more useful than one. The CondConv is able to enhance the
expression ability of CNN by a large margin via increasing
the number of experts.

Fig. 6: Confusion matrix for UNIMIB-SHAR dataset using
the CondConv with n=1 and n=8 from left to right.

Fig. 7: Roc curves on UNIMIB-SHAR Dataset

As shown in Fig.7, the ROC curve is utilized to evaluate
the performance for various activities on the UNIMIB-SHAR
dataset, which consists of 9 different types of ADLs and
8 different types of falls. The lines with different colors
and symbols represent the area under curve (AUC) values.
We also summarize the macro-average and micro-average
performance of the proposed method among all the activities.
The average AUC value is 0.96 and 0.97 respectively. These
ROC curves suggest that distinguishing among falls is very
complicated. For example, the most misclassified falls are Syn-
cope, Falling backward-sitting-chair, Falling with protection
strategies, Falling rightward and Falling leftward, etc. Among
all activities, recognition based on no fall activities obtains
better performance, while recognition based on various fall
activities has the worst performance. This is mainly because
the no fall activities may result in more distinctive features,
while there is a fewer number of explicit features between
various fall activities to be distinguished.

After that, we further evaluate the performance of the pro-
posed CondConv method via using a 10-fold cross-validation
protocol . In 10-fold cross-validation, the original 70% training
set is divided randomly into 10 parts, where each part is held
out in turn and the training is performed on the remaining

Fig. 8: 10-fold cross validation result

nine-tenths. The hyperparameters are tuned according to the
accuracy calculated on the holdout set. Thus, the learning
procedure is executed a total of 10 times on different training
sets. As a result, an overall accuracy estimate can be achieved
via averaging the 10 accuracy estimates. Fig.8 shows the
mean accuracy and standard deviation of the methods when
evaluated on different datasets. It can be observed that more
experts can further improve the baseline CNN due to the
increase of model capacity. The CondConv method with n=8
reports the highest mean accuracy when compared to the other
smaller expert number.

Keeping other hyperparameters as the fixed settings, we
evaluate the sensitivity of the performance by changing the
number of convolution layers and kernel size. In the following,
the effect of the varying number of convolution layers is
evaluated on OPPORTUNITY dataset. Results are shown in
Fig.9 (left). It can be seen that the classification results first
increase and then decrease as the number of layers increases.
The best accuracy is obtained when setting the number of
layers to 5. In this case, the classification accuracy is increased
from 90.58% to 92.76% on OPPORTUNITY dataset. We also
evaluate the sensitivity of kernel size with the values 5*1, 5*3,
5*5, 5*7. In Fig.9 (right), the obvious trend shows that the
classification results still first evolve and then decreases as the
kernel size continues increasing. It shows that this small kernel
is more beneficial for the convolutional network to learn.

Fig. 9: The sensitivity of the performance by change the
number of convolution layers(left) and kernel size(right).

In order to evaluate the superiority of the proposed method,
we reproduce the state-of-the-art DeepConvLSTM accchi-
tecture using our parameter setting (code is available from
https://github.com/STRCWearlab/DeepConvLSTM). The stan-
dard convolution in the DeepConvLSTM is replaced with the
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proposed CondConv module. In the paper by Ordóñez et
al. [19], the final results are reported in terms of F1 score,
where the window length is set to 500 ms, with a step length
of 250 ms. The window length in [19] is smaller, which
is more suitable for LSTM to capture temporal relationship
between adjacent windows. For fair comparisons, we perform
the DeepConvLSTM on the preprocessed dataset. As a result,
the test accuracy obtained by the baseline DeepConvLSTM is
91.28%. When the number of experts n is set to 8, the test
accuracy is increased from 91.28% to 92.96%, with a small
increase in computational cost. The experimental results show
a good generality ability of the proposed method.

TABLE VII: Performance of Different Experts for
OPPORTUNITY dataset

Model Test Acc FLOPs

DeepCondConvLSTM(with n=1) 91.28% 4.68M
DeepCondConvLSTM(with n=2) 91.72% 4.87M
DeepCondConvLSTM(with n=4) 92.63% 5.16M
DeepCondConvLSTM(with n=8) 92.96% 6.03M

Next, we evaluate the distribution of routing weights
activated by all the examples in the UNIMIB-SHAR test set
in the final CondConv layer. Actually, we do not need to
normalize all the weights via a softmax. Instead, the Sigmoid
function is used to compute the routing function. As a result,
Sigmoid functions most often outputs a value in the range 0
to 1. The distribution of the weights can be seen in Fig.10,
which shows that all the weights change between 0 and 1.
Comparing Sigmoid and Softmax, we find that the former
significantly outperforms the latter, which agrees well with
Yang et al’s. results [13]. The main purpose of this evaluation
is to disentangle the influence of different experts at deeper
layers. Fig.10 shows the routing weights follow a bi-modal
distribution, and most of them approximately equal to 0 or 1.
Without using any L1 regularization technique, most experts
are sparsely activated. That is to say, for each individual
example, only a small portion of the entire network is
activated, which suggests an explanation why the CondConv
is able to realize efficient inference with larger model capacity.

Fig. 10: Distribution of routing weights in the final
CondConv layer. The y-axis represents the number of the

routing weights for a given value between 0 and 1, which is
generated by Sigmoid function. The distribution is evaluated
on all activity examples in the UNIMIB-SHAR test set when
there are 16 experts. All routing weights follow a bi-modal

distribution.

We then study the variation of routing weights within
one class in the final CondConv layer. Results are shown in
Fig.11. We find that even within one class the routing weights
between examples show much higher variance. In addition, to
gain a better understanding of experts in the final CondConv
layer, we visualize several typical activity examples of top 4
classes with highest activated values on 8 difference experts,
as shown in Fig.12.

Fig. 11: Routing weights in the final CondConv layer in our
model for 2 classes averaged across UNIMIB-SHAR test set.

Error bars indicate one standard deviation.

Fig. 12: Each subgraph represents one time-series activity
example. The x-axis represents time, and the y-axis

represents the average value of three acceleration signals
collected in the UNIMIB-SHAR dataset. In this figure, from
top to bottom, we could see that most experts are activatied
by Running due to the imbalanced dataset in which Running
accounts for a large fraction of all 17 categories. The fourth
expert is more specific to GoingUp and GoingDown and the

sixth expert is most activated by FallingLeft and
FallingRight.

Fig. 13: Training loss on WISDM dataset
From the results in Fig.13, it can be seen that the training

time does not increase linearly. The training process converges
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faster, and there a faster drop in training loss if there are more
experts.

Finally, we evaluate the actual inference time of the Cond-
Conv models on a smartphone. On the one hand, the Eq.2 and
Eq.5 are mathematically equivalent, which can be formulated
as:

(α1 ·W1 + ..+ αn ·Wn)∗X = α1·(W1 ∗ x)+..+αn·(Wn ∗ x)
(6)

When there are multiple experts, the latter is more compu-
tationally expensive. As a comparison, the former (i.e., the
CondConv method) only requires one expensive convolution
operation, which has lower computational complexity during
inference. On the other hand, as shown in Fig.10, routing
weights follow a bi-modal distribution. Most routing weights
stay close to 0 or 1. That is to say, most experts are sparsely
activated even without any regularization, which is able to
make the inference process faster. The open source APP
introduced in [51] is directly utilized for the evaluation,
which is a smartphone-based application for mobile HAR. A
screenshot of the APP’s user interface is shown in Fig.14. The
CondConv models with n = 1 and n = 8 are trained on the
WISDM dataset. We convert the models into .pb file, which
are deployed to build an Android application. Our experiment
is implemented on a Huawei Mate 30 device with the Android
OS(10.0.0). Without loss of generality, we evaluate the actual
implementation over WISDM dataset, where a 10-second win-
dow with an 95% overlap rate is slide over real sensor readings
to generate one sample. As a consequence, the sliding length
is identical to 500ms, and the recognition system will wait for
500ms to read and predict next sample. In other words, the
system is triggered by scheduled interruptions every 500ms.
As shown in Table VIII, it can be seen that the CondConv with
n = 8 has almost the same inference speed with baseline in
the actual implementation, which is far below 500ms. Thus,
the proposed method can meet real-time requirement in the
actual implementation.

Fig. 14: Screenshot of the APP’s user interface

TABLE VIII: Inference time between Conv and CondConv

Model Inference Time(ms/window)

CNN(Baseline) 228-272ms

CondConv(n=8) 241-292ms

V. CONCLUSION

Recently, deep CNNs have achieved state-of-the-art
performance on various mobile and wearable HAR
tasks. However, this technique is severely hampered by
the computation power in current mobile and wearable
devices. A high number of computations in deep leaning
increases computational time and is not suitable for real-
time HAR on mobile and wearable devices. Shallow and
conventional machine learning methods could not achieve
good performance. Therefore, deep learning methods that
can balance the trade-off between accuracy and computation
cost is highly needed. In this paper, we have presented an
efficient solution for HAR on mobile and wearable devices
via replacing conventional convolutions with CondConv. The
proposed CondConv method is evaluated in on four public
HAR benchmark datasets, WISDM dataset, PAMAP2 dataset,
UNIMIB-SHAR dataset, and OPPORTUNITY dataset,
achieving state-of-the-art accuracy without compromising
inference speed. We have also performed various ablation
experiments to show how such a larger network is clearly
preferable to the baseline while requiring a similar amount
of operations. On the whole, with efficient regulation, the
proposed method can greatly improve recognition accuracy
of the existing HAR using CNN without compromising
computation cost, which is very suitable for HAR that
has strict latency constrains. By combining the efficient
architecture design with any existing CNN based HAR
method, we are able to perform real-time HAR tasks on
mobile and wearable devices.
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