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Triple Cross-Domain Attention on Human Activity
Recognition Using Wearable Sensors

Yin Tang ™, Lei Zhang

Abstract—Efficiently identifying activities of daily living (ADL)
provides very important contextual information that is able to
improve the effectiveness of various sports tracking and healthcare
applications. Recently, attention mechanism that selectively focuses
on time series signals has been widely adopted in sensor based
human activity recognition (HAR), which can enhance interesting
target activity and ignore irrelevant background activity. Several
attention mechanisms have been investigated, which achieve re-
markable performance in HAR scenario. Despite their success,
prior these attention methods ignore the cross-interaction between
different dimensions. In the paper, in order to avoid above short-
coming, we present a triplet cross-dimension attention for sensor-
based activity recognition task, where three attention branches are
built to capture the cross-interaction between sensor dimension,
temporal dimension and channel dimension. The effectiveness of
triplet attention method is validated through extensive experiments
on four public HAR dataset namely UCI-HAR, PAMAP2, WISDM
and UNIMIB-SHAR as well as the weakly labeled HAR dataset.
Extensive experiments show consistent improvements in classifi-
cation performance with various backbone models such as plain
CNN and ResNet, demonstrating a good generality ability of the
triplet attention. Visualization analysis is provided to support our
conclusion, and actual implementation is evaluated on a Raspberry
Pi platform.

Index Terms—Activity recognition, attention, weakly supervised
learning, wearable sensors, convolutional neural networks.

1. INTRODUCTION

URING recent years, human activity recognition (HAR)
D using various motion sensors embedded in smartphones
or other wearable devices has become a new research hotspot in
ubiquitous and mobile computing due to the rapid growth of ap-
plication demands in domains such as health care, life assistance
and exercise monitoring. Sensor-based HAR task [1]-[3] can be
regarded as a multi-channel time series classification problem, in
which a fixed length sliding window is utilized to split time series
signal into equal segments. Various traditional machine learn-
ing approaches such as Logistic Regression, Decision Trees,
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Random Forest and native Bayesian methods have been widely
adopted in HAR areas [4], [5], which have achieved remarkable
performance. However, these shallow learning methods often
require feature extraction from the data, which heavily depends
on expert knowledge from specific domain [6]. The handcrafted
feature engineering inevitably restricts the practicability of the
HAR model when the task is transferred from one domain to the
other.

Lately, deep learning techniques [7]-[9] have broken the
limit to shallow learning methods, which enables richer fea-
ture representations to be learned automatically with no need
of domain-specific knowledge. In particular, compared with
these shallow learning methods with handcrafted features that
only can recognize low-level or simple activities, convolutional
neural networks (CNNs) [7] are more suitable for recognizing
more complex activities because of its advantages of local
dependencies and scale invariance. CNNs have significantly
pushed state-of-the-art performance in HAR scenario given its
rich representation ability. Despite its effectiveness, deep HAR
still faces many key challenges, one of which is ground truth
annotation [10]. In a supervised learning setting, the use of
deep CNNss relies heavily on strictly labeled activity sensor data
for training. Nevertheless, compared with HAR that uses video
data (e.g. GoPro motion camera), the high dimensional time
series data from motion sensors such as accelerometer is harder
to interpret and annotate, which has brought cumbersome and
arduous difficulties to HAR.

Such challenges can be tackled by utilizing attention mecha-
nism [11], [12], which shows great potential in a large variety
of computer vision or natural language processing tasks. The
learning of attention weights can aid the model to focus on the
target object, thereby improving the recognition accuracy. On
the other hand, for an annotator who is in charge of recording
sensor data, it is much simpler to identify whether a target
activity occurs in a long sensor sequence. If a specific activity
can be recognized according to coarse or weakly labels, it will
significantly ease the burden of manual labeling. Intuitively,
the attention mechanism is capable of aiding to tell where or
what to focus via enhancing selectively the interesting target
activity while weakening redundant or even other irrelevant
information. Therefore, it deserves further research whether the
attention mechanism can promote the state-ot-the-art perfor-
mance of HAR via consciously improving output feature maps
of convolutional network.

Recently, hard attention [13] and soft attention [ 14] have been
proposed respectively in weakly supervised learning scenario,
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in which sensor data does not need to be strictly labeled. One
only needs to know which kind of activity has occurred in a
long sensor sequence without the specific location of the target
activity. The learned attention weights can help to focus on
the target activity from a long background sequence. However,
the two attention mechanisms can only tell us where to focus,
ignoring channel information, which plays an important role
in deciding what to focus on. The dual attention network [15]
in weakly supervised HAR applications has demonstrated
the advantages of computing multi-attention. Although
dual attention mechanism provides significant performance
improvements in HAR scenario, it does not account for the
importance of capturing cross-dimension interaction, which
have successfully shown a favorable impact in computer vision
task.

In the paper, we firstly propose a novel triplet attention
network in HAR scenario, which mainly blends three attention
branches. Given a standard convolutional layer, let us consider
its input tensor with shape C' x T" x S, in which C, T and S are
the channel, temporal and sensor modality respectively. Each
branch is responsible for capturing cross-dimension interaction
between the spatial dimensions (7" x S') and channel dimension
(C) of sensor input. We conduct extensive experiments to eval-
uate the triplet attention network on several public benchmark
HAR datasets consisting of UCI-HAR dataset [16], PAMAP2
dataset [17], WISDM dataset [18] and UNIMIB-SHAR [19]
dataset, as well as the weakly labeled HAR dataset. The experi-
mental results manifest that triplet attention perform better than
one or two attention respectively. The main contributions of this
method are summarized as follows:

® Firstly, we propose a new architecture relying on triple
attention mechanism for HAR task, which could aid to
extract richer activity feature representations via building
three attention branches to capture cross-interaction be-
tween sensor dimension, temporal dimension, and channel
dimension.

e Second, the triple attention tends to strength the impor-
tance of cross-dimension interaction, which is superior to
its corresponding predecessors, i.e., one or two attention
respectively.

¢ Finally, extensive experiments are conducted on several
public HAR datasets, and several key hyperparameters
are analyzed in details. We also examine actual imple-
mentation on a Raspberry Pi platform with ARM-based
computing core. The experimental results manifest that
triplet attention method could provide competitive results
at a negligible computational cost.

The rest of the paper is organized as follows. Section II
introduces related works on attention based HAR methods.
Section III presents an overall architecture of the proposed
triplet attention. In Section IV and Section V, we detail ex-
perimental results obtained on four public HAR datasets and
the weakly labeled HAR dataset, which are compared with the
existing SOTAs. Moreover, several ablation studies about the
triplet attention method are provided. Section VI summarizes
our conclusion.

II. RELATED WORKS

Attention in human perception is everywhere, which selec-
tively focus on interesting parts while suppressing the other
irrelevant or even misleading information. During the past few
years, the attention mechanism has been widely incorporated
into various deep CNN architectures, which can significantly
improve performance on large scale computer vision tasks.
Several related attention mechanisms to our work are introduced
as follows. Hu et al. for the first time proposed the Squeeze-and-
Excitation Networks (SENet) [20], which successfully utilizes
global average-pooled features to compute channel attention
in an efficient way. This was followed by the introduction of
Convolutional Block Attention Module (CBAM) [21], in which
the combination of channel attention and spatial attention leads
to significant performance improvement. Global-Context Net-
works (GC-Net) [22] proposed a novel NL-block, which takes
into account global context modeling and lightweight modular
design. More recently, Landskape et al. [23] adopted triplet
attention mechanism for a variety of computer vision tasks,
which concentrates on cross dimension interaction. However,
attention mechanism has been rarely explored in sensor based
HAR scenario.

Due to the popularity of attention mechanism in deep learning,
a surge of research hotspot has been emerging to utilize attention
for handling HAR tasks. Recently, Ma et al. [24] proposed a
novel AttnSense for HAR, which has incorporated the attention
mechanism into a Gated Recurrent Units (GRU) subnet for
capturing the dependencies of sensor signals in both spatial and
temporal domains. Zeng et al. [25] highlighted the important
part of different time series and sensor modalities by designing
temporal attention and sensor attention with Long Short Term
Memory (LSTM). When compared to recurrent neural networks,
CNN has better ability of feature extraction. In recent works,
two mainstream attention mechanisms, hard attention [13] and
soft attention [14], have been incorporated into convolutional
architecture to perform the weakly supervised HAR tasks, which
ignores the importance of sensor channels. Gao et al. [15]
proposed a novel dual attention method for HAR that blends
channel attention and spatial attention, demonstrating obvious
superiority in handling multimodal HAR task. In order to capture
cross-domain interaction of sensor signals, we for the first time
propose a new triple attention network for HAR task, which
is able to extract meaningful cross-dimensional features via
building three main attention branches.

III. MODEL

Actually, the channel attention [20] often needs to compute
a singular weight, i.e., a scalar for each channel of input sen-
sor tensor, which can be used to scale these feature maps for
generating attention effect. Although the lightweight channel
attention is very effective, there is an obvious shortcoming
in its computing process. Usually, in order to produce these
singular weights for each channel, one has to use global average
pooling to spatially subsample the input sensor tensor along
each channel, which inevitably leads to a significant loss in
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spatial information. Thatis to say, the cross-dependence between
channel dimension and spatial dimension is lost due to the sub-
sampling by global average pooling. To avoid above drawback,
the dual attention [21] computes the spatial attention, which is
used as a complement to the channel attention. Simply speaking,
the channel attention tells “what channel” to focus on, and
meanwhile the spatial attention tells “where in the channel” to
focus. However, its shortcoming lies in that the channel attention
and spatial attention are computed independently. As a result,
the cross-interaction [23] between the two is ignored. To address
above shortcoming, we present the use of cross-dimension in-
teraction for HAR task, which builds three attention branches
to capture the interaction between the spatial dimensions (i.e.,
temporal and sensor modality) and channel dimension of input
sensor tensor. The time series sensor data is firstly preprocessed
with the sliding window technique, which is then fed into a
standard convolution layer. For a given convolutional layer, let us
consider an input tensor x with shape C' x T' x S, in which C, T
and § are the channel, temporal and sensor modality respectively.
The cross-dimension interaction is introduced via three parallel
attention branches, each of which is responsible for capturing
dependencies between the (C, T), (C, S) and (7, S) dimensions
of sensor input tensor respectively. Finally, the weights of three
cross-domain attentions are learned in the triplet attention. Fig. 1
shows the framework based triplet attention in HAR system.

A. Rethinking Channel Attention

Let us revisiting channel attention [20], [21] via considering
a convolutional layer and its corresponding input tensor x €
RE*H*W For each independent channel, the SE block compute
the channel attention via utilizing global average-pooling tech-
nique to squeeze the I x W dimension. The channel weights
are generated by two FC layers that is followed by sigmoid
non-linearity function. The research in CBAM shows that the
max-pooling operation is also a good choice for aggregating
discriminative features. Referring to SE and CBAM block, the
weight of the channel attention combining average-pooling and
max-pooling can be expressed as:

WC =0 (f{whwz}(AP(X)) + f{wl,wz}(MP(X))) ) (1)

in  which AP(x) = ;7 b _1 xi; and  MP(y) =
W,H . ’ . .

max;_'y ;4 Xij 1s global average-pooling and max-pooling

operation respectively. o is Sigmoid function. The Eq. (1) can
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Fig. 2. Description of the triplet attention with three branches.

further be expressed as:

W, = o (wz ReLU (w1 AP(x)) + w2 ReLU (w1 MP(x))) .
2
Note that two FC layers are used as indicated above, where
the size of w; and ws is set by adjusting a scaling factor. On
the whole, the Eq. (2) uses two linear projections to assign
corresponding weights to each channel.

B. Triplet Attention Using Cross-Domain Interaction

As mentioned above, the triplet attention has three attention
branches, which is built via using cross-domain attention mod-
ule. The given input sensor tensor x € RE*7*5 will be sent to
an attention branch respectively. In fact, there are several aggre-
gation for attention weights, such as addition, multiplication and
concatenation. In order to make computation more lightweight,
the Z_Pooling technique [23] is used, which can preserve richer
feature representations, and meanwhile compressing depth. Un-
like the CBAM, two pooled features are concatenated to aggre-
gate information, which can be formulated as:

Z_Pooling(x) = [MaxPoolpa(x), AvgPool o4(x)], (3)

where Od is the Oth-dimension across which the max and
average pooling operations occur. That is to say, the Z_Pooling
can reduce the zeroth dimension given input tensor to two by
aggregating the two pooled features. For example, a sensor
tensor of shape (C' x T' x S) will be transformed into an output
tensor of shape (2 x T' x S) through Z_Pooling. In fact, every
branch is implemented by the following three steps, which can
generate a refined tensor. The triplet across-domain attention is
shown in Fig. 2.
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The first branch is in charge of calculating the cross-
interaction between temporal dimension and channel dimension.
Firstly, the tensor y with input shape (C' x T' x ) is rotated 90°
counter-clockwise along the 7 axis to generate a new tensor X1
with the shape (S x T x C); X1 is then fed into Z_Pooling,
which can generate a tensor Y} with the shape (2 x T' x C);
As a third stage, Y7 is passed through a standard convolution
with k£ x 1 kernel size (e.g., 3 x 1, 5 x 1), followed by a batch
normalization, which results in an intermediate output (shape
is 1 x T x C); After passed through a sigmoid activation, the
intermediate output is turned into attention weights w;, which
are applied to X1, then rotated 90° clockwise along the T axis to
keep the shape of input .

In the second branch, the cross interaction between sensor
dimension and channel dimension can be computed in a similar
way. The tensor y with input shape (C' x T x S) is rotated
90° counter-clockwise along the S axis, which provides a new
tensor Y2 with the shape (7" x C' x S); Y2 is then passed through
Z_Pooling layer, which can generate a tensor X5 with the shape
(2 x C x S); At the third stage, Y3 is passed through a standard
convolution with & x 1 kernel size (e.g., 3 x 1,5 x 1), followed
by a batch normalization, which results in an intermediate output
(1 x C x S); After passed through a sigmoid activation, the
intermediate output is turned into attention weights ws, which
are applied to Y2, then rotated 90° clockwise along the S axis to
maintain the shape of input .

For the third branch, the channels of input tensor  are reduced
to two via using Z_Pooling operation, which provides the tensor
X3 with the shape (2 x T' x S); X3 is then fed into a standard
convolution with & x 1 kernel size (e.g., 3 x 1,5 x 1), followed
by a batch normalization, which results in an intermediate
output; The output is then fed into a sigmoid activation, which
generates the attention weights w3 with shape (1 x T' x S); The
attention weights ws are then applied to the input .

Finally, the three refined tensors from three branches are
aggregated via learning three weight parameters. For simplicity,
it can be represented as:

1 1 1
Y = 3 (R(wix1)) + 3 (R (w2X2)) + 3 (wsXs), &)

where w1, wy and w3 are the three cross-dimensional attention
weights. The X1, X2 and X3 represent the refined tensor, which
can be obtained via rotating the input tensor x 90° counter-
clockwise along T axis and S axis respectively. R means 90°
clockwise rotation. Compared with above simple averaging, the
model performance can be further improved by introducing a
combination of three learnable weight parameters, which can be
formulated as:

Y = o1 (R(wiX1)) + a2 (R (w2X2)) + a3 (wsxz),  (5)
which will be detailed in Section V. B.

IV. EXPERIMENT

In the following, we will describe the experimental setup
and main results in detail. All the experiments are divided into
three parts. Firstly, to demonstrate the superiority of the pro-
posed triplet attention method, we compare classification results

on four publicly available HAR datasets including UCI-HAR,
WISDM, PAMAP2 and UNIMIB-SHAR. All datasets have been
recorded by various sensors such as accelerometers and gyro-
scope, which can reflect human activities in different scenarios.
Secondly, detailed ablation experiments are provided to analyze
the impact of several hyperparatmers. Finally, we evaluate the
performance of triplet attention in the weakly supervised activity
recognition task, which uses the weakly labeled dataset collected
by He et al. [26]. The impact of different cross dimension
attention for HAR is explored.

A. Training Details

Our model is trained by minimizing cross-entropy (CE) loss
using mini-batch gradient descent, where the batch size is set
to 200. An Adam optimizer with dynamic learning rate is used.
The initial learning rate is set to 0.001, which will be reduced
by a factor of 0.1 after every 100 epochs. All the experiments
are implemented in Python using PyTorch framework backend
on a server with an Intel i7-6850 K CPU, 64 GB RAM and
NVIDIA RTX 3090 GPU. Since there is highly imbalanced class
in various naturalistic activity datasets, different class weights
need to be reconsidered according their sample proportion. Thus,
the mean I score [27] is used as metric to evaluate final
performance.

B. Datasets

A comprehensive evaluation of the proposed method is con-
ducted using four popular HAR datasets that include both high-
dimensional and low-dimensional sensor modalities. The sensor
data is segmented using sliding window technique with different
window size and step length, which has an important influence
on recognition system’s practical performance. We select the
same window size and step length adopted in previous successful
cases [15], [27] to ensure fair comparison.

e UCI-HAR [16]: This dataset was collected by recruiting 30
volunteers. Everyone is required to wear a Samsung Galaxy S
II smartphone around their waist to perform six simple daily
activities consisting of “Walking,” “Going upstairs,” “Going
downstairs,” “Sitting,” “Standing,” “Laying”. Three-axis ac-
celerometer and gyroscope sensor signals are recorded at a fixed
frequency of 50 Hz. The raw data is firstly preprocessed by the
noise filter, which is then segmented by the sliding window with
afixed length of 128 and 50% overlap. Finally, the whole dataset
has been randomly split into two parts, where 70% for training
and 30% for test.

e PAMAP?2 [17]: The Physical Activity Monitoring for Aging
People 2 dataset is collected from 9 participants to perform 12
daily activities (“Walking”, “Lying down”, “Standing”, etc.)
and excises ( “Watching TV,” “Computer work,” “Car driving,”
etc.) The three inertial measurement units (IMUs) were placed
on the hand, chest, and ankle of each subject to collect raw
sensor data from accelerometer, gyroscope, magnetometer, and
heart rate. Ata 100 Hz sampling rate, the collection process lasts
around 10 hours. To perform fair comparisons with previous
works [27], the sensor signal is down-sampled into 33.3 Hz and
with a 5.12 s sliding window and 78% overlap. Generally, this
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TABLE I
BRIEF DESCRIPTION FOR EACH BACKBONE

# Number | Batch | Activation
# Layer
of Kernels | Norm | Function
Conv2d_1 64 v ReLU
Conv2d_2 128 v ReLU
Standard CNN
Conv2d_3 256 v ReLU
FC_1 - - Softmax
Conv2d_11 64 v ReLU
Conv2d_12 64 v -
Conv2d_21 128 v RelLLU
Equally-sized ResNet Conv2d_22 128 v _
Conv2d_31 256 v ReLU
Conv2d_32 256 v -
FC_1 - - Softmax

dataset are randomly divided into two parts, in which 80% is
used for training and 20% for test.

e WISDM [18]: The WISDM samples belong to 29 volun-
teer subjects who performed 6 discriminative human activities
(“Walking”, “Jogging,” “Sitting,” “Standing,” “Going down-
stairs” and “Going upstairs”) by placing their mobile phones
with Android operating system in front leg pocket. It contains
1,098,213 samples sampled at a rate of 20 Hz from a triaxial
accelerometer sensor. Accordingly, the accelerometer sensor
data will be preprocessed by a sliding window of 10 seconds
and 95% overlap (200 readings/window). This dataset will be
split into two parts, in which 80% for training and 20% for test.

e UNIMIB-SHAR [19]: This dataset includes 11,771 samples
from 30 test subjects for the use of human pose estimation
and fall detection. During data collection, a Samsung Galaxy
Nexus 19250 smartphone is embedded with a Bosh BMA220
3D accelerometer, which measured sensor signals at a frequency
of 50 Hz. The dataset consists of 17 fine-grained categories,
which is further split into 9 classes of activities of daily living
and 8 classes of falls. Accordingly, the sliding windows of data
are produced by a size T = 151 (151 readings/window). Our
experiment requires dividing up this dataset into two parts, where
70% for training and the rest for test.

C. Comparison Algorithms

The triplet attention mechanism can be used to update the
existing network architectures at a negligible cost. Extensive
experiments are conducted to evaluate the performance gain
brought by the triplet attention part. To demonstrate generaliza-
tion ability of the triplet attention and analyze how it influence
the classification results, we use standard CNN, equally-sized
ResNet [28] as our backbones, which is introduced as follows.
Table I presents their detailed architectures.

o Standard CNN: The baseline CNN consists of three standard
convolution layers. Batch normalization and ReLU activation
are applied after each convolutional layer.

e Equally-sized ResNet: To demonstrate the effectiveness of
triplet attention module, we also incorporate it into the residual
networks proposed in the previous work [28]. The residual
network consisting of three residual blocks with the same ar-
chitecture is used as our baseline, in which the contribution of
triplet attention mechanism is further evaluated.

V. DISCUSSION

The proposed method is compared with both baselines on four
public HAR datasets. We have three major observations from
Table II. Firstly, it can be seen that the ResNet outperforms all
original CNN by a large margin due to its strong feature extrac-
tion ability. For instance, the ResNet outperforms standard CNN
by 0.21% in terms of accuracy on UCI-HAR dataset. Secondly,
the results indicate that our triplet attention can further improve
performance by clear gains compared to these baselines. Results
from Table II, it can be easily seen that the proposed method
achieves 1.35% and 0.62% performance gains on PAMAP2
dataset when using CNN and ResNet as backbones respectively.
Similar results are also reflected on WISDM dataset. Meanwhile,
the triplet attention with almost the same complexity is superior
to the original CNN and equally-sized ResNet by 0.96% and
1.47% in terms of accuracy on UNIMIB-SHAR dataset, respec-
tively. This comparison consistently verifies the effectiveness of
our model on different baselines. That is to say, it can boost
the accuracy of baselines significantly, demonstrating that it
can generalize well on various models on HAR dataset. Lastly,
we note that there is no extra parameter caused by the triplet
attention compared to their plain counterparts, which motivates
us to update new light-weight network by applying our proposed
module.

In addition, the triplet attention method is compared with the
other state-of-the-art algorithms [15], [31], [32], [35] accord-
ingly. Table II summarizes main experimental results. Com-
pared with recent state-of-the-art methods, it obtains better or
competitive results without increasing model complexity. As
shown in Table II, we observe that the integration of the triplet
attention with ResNet is superior to Xiao et al.’s [31] result
by 0.44% that uses a federated learning method on UCI-HAR
dataset. Compared with Teng er al.’s [27] result using local loss
method, the triplet attention achieves 0.23% performance gain
in terms of accuracy on PAMAP2 dataset. On WISDM dataset,
our method is also able to beat Janarthanan et al.’s [35] result by
1.11%. Finally, the triplet attention also achieves very competi-
tive accuracy on UNIMIB-SHAR dataset, which outperforms all
previous results [15], [19], [27], [36]. In particular, as mentioned
above, it indicates that the triplet attention can be used to update
the existing network architecture.

A. Visualization Analysis

To evaluate whether the cross-dimensional interaction pro-
vided by triplet attention can capture richer internal represen-
tations of sensor signals, we provide sample visualization to
better understand the cross-dimensional interaction between
sensor dimension, temporal dimension and channel dimension
on PAMAP?2 dataset. The results show that our triplet attention
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TABLE II

THE CLASSIFICATION PERFORMANCE ON FOUR HAR DATASETS

Method UCI-HAR PAMAP2 WISDM UNIMIB-SHAR
etho
Fy score(%) Para.(M) | F; score(%) Para.(M) | F; score(%) Para.(M) Fy score(%) Para.(M)
Baseline 96.12 0.34 91.13 0.86 96.73 0.42 74.42 0.39
Standard CNN
+TA 96.60 0.34 92.48 0.86 97.34 0.42 75.38 0.39
. Baseline 96.33 0.85 92.58 1.37 98.10 1.01 77.08 0.90
Equally-sized ResNet
+TA 96.77 0.85 93.20 1.37 98.61 1.01 78.55 0.90

Related Research

Anguita et al [16] 95.18
Khan et al [29] 95.37
Ignatov et al [30] 96.63
Xiao et al [31] 96.33

Ma et al [24] 89.30
Zeng et al [25] 89.96
Teng et al [27] 92.97
Wan et al [32] 91.16

Ignatov et al [30] 93.32
Wasle et al [33] 98.09
Ravi et al [34] 98.20

Janarthanan et al [35] 97.50

Gao et al [15] 77.12
Micucci et al [19] 74.66
Teng et al [27] 78.07
Liu et al [36] 76.14
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Fig. 3. Visualization of cross-dimension interaction between three attention

branches.

module is superior to its plain counterparts. As can be seen
from Fig. 3 (Left), the baseline without the triplet attention
fails to focus on relevant features between cross-dimension. It
is very evident that the triplet attention is able to provide richer
activity feature representations due to the use of cross-dimension
interaction (Fig. 3 Right vs. Left).

Furthermore, the visualization analysis is provided to evaluate
the impact of sensor nodes placed on different body parts of
each participant. As shown in Fig. 4, the three main IMUs
placed on the wrist, ankle and chest of human body are used
to collect various human activities, the attention weights of dif-
ferent sensor modalities are computed. Specifically, for “nordic
walking” activity, the triplet attention puts a high emphasis
on the hand sensor (hand_x), the ankle sensor (ankle_z) and
the chest sensor (chest_z). For “rope jumping” activity, the
triplet attention focuses on the hand sensor (hand_y, hand_z),
the ankle sensor (ankle_x) and the chest sensor (chest_y). For
“vacuum cleaning” activity, it pays much attention to the hand
sensor (hand_y), the ankle sensor (ankle_y, ankle_z) and the
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Fig. 4. Visualization of sensor attention on PAMAP2 dataset.

chest sensor (chest_x, chest_z). In a word, compared with the
baseline counterparts, it is more reasonable that triplet attention
mechanism can treat different sensor modalities unequally.

B. Ablation Studies

We further conduct ablation experiments on PAMAP?2 dataset
to validate the effectiveness of cross-dimension interaction via
evaluating the impact of the branches in the triplet attention
module. As shown in Table III, the triplet attention with all three
branches turned on is denoted as full. “Channel off” indicates
that the first two branches of the input sensor tensor without
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TABLE III
PERFORMANCE FOR DIFFERENT TRIPLET ATTENTION BRANCHES

Model Fi(%) Para.(M)
Standard CNN 91.13 0.861
Standard CNN + TA(channel off) 92.09 0.862
Standard CNN + TA(spatial off) 91.69 0.863
Standard CNN + TA(full) 92.48 0.863
Equally-sized ResNet 92.58 1.368
Equally-sized ResNet + TA(channel off) | 93.01 1.369
Equally-sized ResNet + TA(spatial off) 92.77 1.369
Equally-sized ResNet + TA(full) 93.20 1.370

Different weighting factor

Temporal & Sensor

0.38

Channel & Sensor.
Temporal & Channel

—_— o

0.34 bl ¢ )

— a3

0 25 50 75 100 125 150 175 200
Epoch

Fig. 5. The impact of different weighting factors.

TABLE IV
THE MEAN F' (%) SCORE OF DIFFERENT AVERAGE METHODS

Model CNN ResNet
TA(with simple average) 92.19 92.96
TA(with weighted average) | 92.48(+0.29)  93.21(+0.25)

permutation are turned off, which can be seen as a two-attention
case. “Spatial off” indicates that the third branch, which is
involved in permutations of the input sensor tensor, is turned
off. It can be seen as a one-attention case. The results show that
the triplet attention performs significantly better than one or two
attention, as well as its plain counterpart without attention, which
isinline with our statement. Here, we treat cvq, o and 3 as three
learnable parameters rather than hyperparameters, whose initial
values are 1/3. That is to say, their parameters are learned during
training from data sets. Fig. 5 illustrate this learning process on
PAMAP?2 dataset. Results from Table 1V, it can be seen that
the learnable parameters are superior to simple averaging. The
source code will be released at the website: https://github.com/
yinntag/Triple-Cross-domain- Attention-for-HAR.

Actually, the window size has an important effect on activity
recognition performance. Fixing an overlap rate, one can use
a fixed-length sliding window to segment continuous sensor
reading, which may produce continuous samples and each of
them may be assigned a specific activity label. As a consequence,
sensor signals are divided into windows of a fixed size and
with no inter-window gaps, where an overlap between adjoining
windows is tolerated in order to preserve the continuity of
samples. Though sliding window has been normally utilized to

PAMAP2
100
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~
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S

Fig. 6. The test mean F (%) score at different sliding window sizes.

perform segmentation, there is still no clear consensus on how
to select an optimal window size. According to our intuition,
reducing the window length will be more beneficial for a faster
activity recognition, as well as reduced computational cost and
energy consumption. Instead, increasing window length are
usually used for the recognition of complex activities that last a
longer time. We check the performance on PAMAP2 dataset with
different window sizes to show the robustness of the proposed
method. Results are summarized in Fig. 6. It can be seen that
the classification performance evolves non-monotonically as the
window size increases, which attains a peak value at 343. The
triplet attention is able to reliably produce performance gain on
every window size.

In order to verify the robustness of the proposed method,
we perform leave-one-subject-out cross validation on PAMAP2
dataset. Actually, it can be seen as a special case of k-fold
cross validation, in which each individual person is treated as a
“test” set. In other words, the number of folds should be equal
to that of persons. As mentioned above, the PAMAP2 dataset
is collected from nine subjects. Thus, in this case, the whole
dataset will be divided into 9 folds. The average F) score is
used as a metric to evaluate the final classification performance.
We perform 9 folds, or iterations, of our model. Each time,
the model will be trained on 8 subject and tested on the “left
out” subject. Results are shown in Table V. It can be clearly
seen that the triple attention can reliably produce performance
gain over both baselines. Specifically, the triplet attention could
produce a significant improvement in the leave-one-subject-out
cross validation, which beats the baseline CNN by 1.15%, and
ResNet by 0.45% respectively.

C. Actual Implementation of Raspberry Pi

To test the real-time performance of our model on mobile
devices, the CNN integrated with triplet attention module is
deployed in an embedded system based on Raspberry Pi OS
with PyTorch installed. By importing the trained model file
to the embedded system, we perform real-time prediction of
activities on WISDM dataset. As shown in Fig. 7, the HAR
system is deployed into a Raspberry Pi 3B+, which is equipped
with an official supported Raspberry Pi operating system. It has
a good compatibility with current popular deep learning library
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TABLE V 500 WISDM
N P SO L e S —on — o
£

Model CNN  CNN(+TA) | ResNet  ResNet(+TA) g 300 1
# Subject_01 | 90.12 91.52 91.94 91.89 g 200 { \ - \ I I+
# Subject_02 | 84.21 85.42 87.67 88.01 “ié 100 1
# Subject_03 | 96.05 96.82 95.90 97.01 ol . ‘ . . . .
# Subject_04 | 96.13 96.47 96.26 96.55 0 % 100 o 200 0 300
# Subject_05 | 93.21 94.28 95.01 96.25
# Subject_06 .47 83.02 86.57 $7.90 gsin t?(.)n. Inference time of convolutional network with or without triplet
# Subject_07 | 70.79 74.67 77.12 76.45
# Subject_08 | 95.89 96.33 96.01 96.03
# Subject_09 | 92.11 92.95 93.36 93.77

Average 89.01 90.16 91.09 91.54

Fig. 7. Actual implementation on Raspberry Pi 3 Model B+ platform.

¢ HAR_demo = a X

Walking 0.0
Walking Upstairs 0.0
Walking Downstairs 0.0
Sitting 0.99
Standing 0.01
Jogging 0.0

inference time: 153.875ms

Prediction Clear

Fig. 8. The user interface of HAR application with triplet attention.

PyTorch 1.7. The Raspberry Pi is configured to communicate
with a laptop computer. A Python program is developed for the
HAR application (Fig. 8). For the practical implementation, a
10-second window with an 95% overlap rate is used to segment
sensor readings. That is to say, the sliding step length is equal
to 500 ms, and the HAR system will wait for 500 ms to read
and predict next sample. We measure the inference time over
300 runs and results are shown in Fig. 9. It can be seen that the
standard CNN takes around 129 ms per window, while CNN+TA
takes 153.9 ms per window, which is far below 500 ms. Thus,

Fig. 10.  Snapshots of data collection in real scene.

Fig. 11.

The demo of collecting and processing raw data.

this result is in line with our expectations and indicates that
the proposed model can easily perform activity inference in a
real-time way.

D. Weakly Supervised Learning

Our method is also evaluated on the weakly supervised
dataset, which was collected by placing an iPhone 7 in the
right pants pocket of 10 volunteers. Fig. 10 illustrates the data
collection process, in which each volunteer performs 5 kinds
of activities (“walking,” “going upstairs,” “going downstairs,”
“jumping” and “jogging”). “Walking” is regarded as a back-
ground activity, which is distinguished from the rest four target
activities. The sensor data is collected at a sampling frequency of
50 Hz. The application called HascLogger is used to record the
three-axis accelerometer data of these activities, which produces
76,157 samples. Accordingly, the sensor data can be segmented
by a sliding window of 40.96 seconds and 50% overlap. In our
experiment, the ratio of training set to test set is 7:3. Fig. 11
presents the software interface where these raw data are collected
and processed.

We compare the triplet attention with several state-of-the-art
algorithms such as CNN, VGGNet and ResNet on the weakly
labeled dataset. It can be seen that the embedded triplet attention
module produces the best performance among all the algorithms

6«
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THE CLASSIFICATION PERFORMANCE ON WEAKLY LABELED HAR DATASET

TABLE VI

VI. CONCLUSION

In this paper, we focus on learning cross-interaction attention
for sensor based HAR task with low model complexity. A new
triplet attention module is proposed, which tends to capture
the cross-interaction between sensor dimension, temporal di-
mension, and channel dimensions via building three attention
branches. Our experimental results show that the lightweight
triplet attention block plays a crucial role in improving the
performance of various deep CNN architectures such as the plain
CNN and ResNet. Our triplet attention exhibits a good gener-
alization ability for various sensor based HAR tasks. Several
ablation experiments including visualization analysis are pro-
vided to support our conclusion, which verify the effectiveness
of the triplet attention method. We hope this work could motivate
future research of attention-based network architecture design

Model Fi(%) Para.(M)
Baseli 89.80 0.48
Standard CNN aene
+TA 92.68 0.48
Baseli 90.72 0.78
Equally-sized VGGNet aserne
+TA 92.96 0.78
Baseli 90.93 0.79
Equally-sized ResNet aserne
+TA 93.85 0.80
Ordéiiez et al, 2016 [37] 90.94 -
Wang et al, 2019 [38] 93.55 -
Going downstairs Going upstairs
- Background Target-=Background- - arge =
- Window Size(2048) - - ‘Window Size(2048) -
o 1 o 1
Jogging Jumping
- farget: - g -~
- Window Size(2048) - - Window Size(2048) -
3 1] 8 | |..
Fig. 12.  Some example of location for target activity of the weakly sensor
data.

in Table VI. Respectively, the proposed method achieves 2.88%,
2.24% and 2.92% performance gains over all baselines using
CNN, VGGNet and ResNet as backbones. At the same time,
our method is also superior to DeepConvLLSTM [37] by a large
margin of 2.91%. Compared with Wang et al’s work [38],
the triplet attention achieves 0.3% performance gain. The re-
sults show that cross-dimensional attention is also conducive
to enhance the feature representation of weakly supervised
learning.

In the final step, the visualizing analysis is provided so as
to identify what part of the target signal is the most important
along the temporal dimension. For the weakly labeled dataset,
every signal window often contains the target activity and the
background activity that submerges it, such as “walking”, which
is different from strictly labeled HAR dataset. The four sensor
signal windows, that are roughly labeled as “jogging,” “jump-
ing,” “going downstairs” and “going upstairs”, are shown in
Fig. 12. Due to the reason that our triplet attention method
can focus on only the interesting part of the target activity and
weaken the background activities, it will be more beneficial for
ground truth data annotation.

in a large variety of practical HAR scenarios.
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