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Layer-Wise Training Convolutional Neural
Networks With Smaller Filters for Human

Activity Recognition Using Wearable Sensors
Yin Tang, Qi Teng, Lei Zhang , Fuhong Min , and Jun He , Member, IEEE

Abstract—Recently, convolutional neural networks (CNNs)
have set latest state-of-the-art on various human activ-
ity recognition (HAR) datasets. However, deep CNNs often
require more computing resources, which limits their applica-
tions in embedded HAR. Although many successful methods
have been proposed to reduce memory and FLOPs of CNNs,
they often involve special network architectures designed for
visual tasks, which are not suitable for deep HAR tasks with
time series sensor signals, due to remarkable discrepancy.
Therefore, it is necessary to develop lightweight deep models
to perform HAR. As filter is the basic unit in constructing
CNNs, it deserves further research whether re-designing
smaller filters is applicable for deep HAR. In the article,
inspired by the idea, we proposed a lightweight CNN using Lego filters for HAR. A set of lower-dimensional filters is
used as Lego bricks to be stacked for conventional filters, which does not rely on any special network structure. The
local loss function is used to train model. To our knowledge, this is the first paper that proposes lightweight CNN for
HAR in ubiquitous and wearable computing arena. The experiment results on five public HAR datasets, UCI-HAR dataset,
OPPORTUNITY dataset, UNIMIB-SHAR dataset, PAMAP2 dataset, and WISDM dataset collected from either smartphones
or multiple sensor nodes, indicate that our novel Lego CNN with local loss can greatly reduce memory and computation
cost over CNN, while achieving higher accuracy. That is to say, the proposed model is smaller, faster and more accurate.
Finally, we evaluate the actual performance on an Android smartphone.

Index Terms— Activity recognition, deep learning, convolutional neural networks, split-transform-merge, local loss.

I. INTRODUCTION

W ITH the continuous technological advancement of
mobile devices with sensing capabilities, ubiquitous

sensing with the purpose of extracting knowledge from the
data acquired by pervasive sensors, has become a very active
research area. In particular, human activity recognition (HAR)
using inertial sensors such as accelerometer and gyroscope
embedded in smartphones or other edge devices has received
much attention in recent years, due to the rapid growth of
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demand for various real-world applications such as smart
homes, health monitoring, and sports tracking [1]. HAR can be
considered as a typical pattern recognition (PR) problem, and
traditional machine learning approaches such as decision tree
[2], support vector machine [3] and naive Bayes [4] have made
great achievement on inferring activity kinds. However, those
conventional PR approaches may heavily rely on hand-crafted
feature extraction [5], which requires expert experience or
domain knowledge. In the recent years, convolutional neural
networks (CNNs) [6], [7], represents the biggest trend in the
field of machine learning, which can substitute for manually
designed feature extraction procedures. Due to the emergence
of CNN, research on machine learning is undergoing a transi-
tion from feature engineering to network engineering. Human
efforts are shifting to designing smaller network architectures
while keeping model performance. For a variety of HAR tasks,
it has been widely demonstrated that building deeper CNN
may result in higher performance [8], but lead to the need
for more resources such as memory and computational power.
Deep models usually have millions of parameters, and their
implementation on mobile devices becomes infeasible due
to limited resources, which inevitably prevents the wide use
of deep learning for HAR on mobile and wearable devices.
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Therefore, it is necessary to develop lightweight CNN to
perform HAR.

Recently, there has been rising interest in building small and
efficient CNN for various embedded applications, whose goal
is to reduce parameters while keeping model performance as
much as possible. In particular, research in computer vision
has been at the forefront of this work. This motivates a
series of works towards lightweight network design, which can
be generally categorized into either compressing pre-trained
networks or designing small networks directly. For model
compression [9]–[12], the existing works mainly focus on
pruning, decomposing, parameters sharing or low-bit repre-
senting a basic network architecture, which cannot directly
learn CNN from scratch. Due to the loss caused by com-
pression, the performance of compressed model is usually
upper bounded by its original pre-trained networks. These
approaches often require special architectures and operation
such as sparse convolution and fixed-point multiplication,
which cannot be directly applied for HAR on off-the-shelf
platform and hardware. An alternative is to design lightweight
network architecture directly. For example, VGGNets [13] and
ResNets [14] exhibit a simple yet efficient strategy of con-
structing deep networks: stacking building blocks of the same
shape. Some researchers have demonstrated that carefully
designed topologies are able to achieve compelling accuracy
with low computational complexity. In particular, an important
common idea is split-transform-merge [15], in which the input
is split into a few lower-dimensional embeddings, transformed
by a set of specialized filters, and merged by concatenation.
Based on the idea, Xception [16], MobileNet [17], Shufflenet
[18] and ResNeXt [19] have achieved the state-of-the-art
performance. However, the aforementioned approaches have
seldom been directly adopted for HAR, according to related
literatures.

The last few years have seen the success of network
engineering in motion vision tasks as mentioned above, but
it is still unclear how to adapt these architectures to new
HAR dataset tasks, especially when there are remarkable
different factors to be considered. In essence, HAR using
inertial sensors can be seen as a classic multivariate time series
classification problem, which makes use of sliding window
to segment sensor signals and extracts discriminative features
from them to be able to recognize activities by utilizing a
classifier. Therefore, unlike imagery data, the HAR task has its
own challenges. Though lightweight network modules achieve
remarkable results in computer vision tasks, it has seldom been
exploited in the field of HAR. As filter is a basic unit of
constructing CNN, several researches have been conducted to
discover whether it is applicable to re-design smaller filters
in deep learning. Beyond the high-level network modules,
Yang et al. [20] recently proposed an efficient CNN with Lego
filters, which achieved state-of-the-art performance on motion
vision tasks. For sensor based HAR, replacing ordinary filters
with small Lego filters could be one feasible step to develop
lightweight CNN deployed on mobile and wearable devices.

In this article, we propose a lightweight CNN for HAR
using Lego filters. To the best of our knowledge, building

resource constrained deep networks suitable for HAR has
never been explored, and this article is the first try to develop
lightweight CNN for HAR on ubiquitous and wearable com-
puting area. Compared with standard convolution, convolution
kernels constructed by lower dimensional Lego filters can
greatly reduce the number of parameters. The Lego filters
can be combined with the state-of-the-art deep models widely
used in HAR, which enables substantially improved efficiency
for various HAR applications. A method named as straight-
through-estimator (STE) [21] is used to learn optimal per-
mutation of Lego filters for a filter module in an end-to-end
manner. A classic split-transform-merge three-stage strategy
[16], [17] is utilized to further accelerate Lego convolutions.
In our previous work [22], layer-wise loss functions are used
to train standard CNN. Without loss of generality, we train
the Lego CNN with local loss, which can further improve
performance without any extra cost.

Deep models have powerful learning abilities, while shallow
models are more efficient. To our knowledge, many model
compression approaches have been proposed in computer
vision field. How to perform both accurate and light-weight
HAR still needs to be addressed. The design of lightweight
CNN for HAR has been poorly explored in the literature.
Without loss of generality, compression ratio and speedup are
used to evaluate the performance of the proposed method.
The performance is evaluated on five public benchmark
datasets, namely UCI-HAR dataset [3], PAMAP2 dataset
[23], UNIMIB-SHAR dataset [24], OPPORTUNITY dataset
[25], and WISDM dataset [26]. Actually, it is expensive or
even not affordable to collect enough “ground truth labeled”
training data as benchmark in the realistic configuration of
HAR. To demonstrate the generality and superiority of the
proposed method, we try to evaluate the performance across
multiple most cited public HAR datasets, which are devised
to benchmark various HAR algorithms. All the datasets are
collected from either smartphones or multiple sensor nodes in
ubiquitous and wearable computing scenarios. In particular,
the authors of the OPPORTUNITY dataset have stated that
the activity recognition environment and scenario has been
designed to generate many activity primitives, yet in a realistic
manner [25]. In the article, our main research motivation is to
develop a lightweight CNN for mobile and wearable comput-
ing. Therefore, we also evaluate the actual inference speed on
a smartphone with an Android platform, which is cheaper and
easier to use. By comparing with the state-of-the-art methods
on classification accuracy, memory and floating points opera-
tions per second (FLOPs), we show how varying compression
ratio affects over-all performance, and how such a lightweight
system outperforms the state-of-the-art algorithms. The exper-
iment results indicate the advantage of the lightweight CNN
using Lego filters with regards to typical challenges for HAR
in ubiquitous and wearable computing scenarios. Our main
contribution is three-fold:

Firstly, in sensor based HAR scenarios we for the first
time develop a lightweight CNN with smaller Lego filters,
which is able to greatly reduce memory and computation cost
meanwhile maintaining almost the same accuracy;
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Secondly, we propose to train the Lego CNN with
layer-wise loss functions, which can further improve results
without any extra cost;

Thirdly, the experiment results indicate that the proposed
method can consistently outperform the baseline CNN on test
error. When compared to our previous method with local loss
[22], the layer-wise training Lego CNN can achieve almost the
same state-of-the-art performance, even though the number
of parameters and FLOPs are much smaller. That is to say,
the proposed method is smaller, faster and more accurate.

The article is structured as follows. Section II summarizes
related works of HAR and deep compression. Section III
presents the details of deep local loss HAR using Lego filters.
Section IV details the HAR dataset, experimental setup used,
and our experimental results. In Section V, we extend and
discuss above experiment results and in Section VI, we draw
our conclusions.

II. RELATED WORKS

In recent years, due to advances of the computational
capabilities, CNN have achieved remarkable results on sen-
sor based HAR [27] and outperformed other state-of-the-art
algorithms which requires advanced preprocessing or cum-
bersome hand-crafting feature extraction. For example,
Zeng et al. [6] firstly applied CNN to HAR, which extracts
the local dependency and scale invariant characteristics of the
acceleration time series. Yang et al. [28] applied CNN with
hierarchical models to demonstrate its superiority to traditional
shallow machine learning methods on several benchmark HAR
datasets. Jiang and Yin [29] transformed the raw sensor signal
into 2D image signal, and then a two layer CNN is used
to classify this signal image equaling to the desired activity
recognition. Hammerla et al. [30] did an early work by
evaluating the performance of various deep learning techniques
through 4000 experiments on some public HAR datasets.
Teng et al. [22] proposed a layer-wise CNN using local
loss function, which can achieve state-of-the-art performance
across multiple benchmark HAR datasets. Wang et al. [31]
proposed an attention based CNN to perform weakly labeled
HAR tasks, which can greatly facilitate the process of sensor
data annotation. Ordóñez and Roggen [32] proposed a new
DeepConvLSTM architecture composed of CNN and recurrent
networks, which outperforms CNN. Agarwal and Alam [33]
proposed a lightweight Recurrent Neural Network (RNN) in
HAR applications. On the whole, shallow neural networks and
conventional PR methods could not achieve good performance,
compared with deep learning. However, deep models often
require lots of computing resources, which is not available for
HAR using mobile and wearable devices [1], [34]. Thus it
deserves deep research into lightweight CNN architecture of
better performance for HAR.

Recent research effort on visual recognition has been
shifting to design small network with high performance.
In particular, when there are more layers, designing network
architectures becomes increasingly difficult due to the growing
number of hyper-parameters. The increasing demands for
running efficient deep neural networks on embedded devices
also encourage the study. Several representative state-of-the-art

networks are reviewed. SqueezeNet [35] in early 2016 was the
first article that was concerned with building a memory effi-
cient architecture. VGGNets [13] tend to reduce free choices
of hyper-parameters by stacking building block of same shape
to construct network, and this strategy is also inherited by
ResNets [14]. Another important strategy is split-transform-
merge as mentioned above. Based on this strategy, Google’s
MobileNets [17] goes one step further by modifying the
standard convolutional operation as depth-wise separable con-
volution and point-wise convolution. The idea of depth-wise
convolutions in MobileNets is then generalized to group-wise
convolutions as in ShuffleNets [18]. Designing convolution
with a compact filter can effectively reduce the computation
cost. The key idea is to replace the loose and over-parametric
filters with compact blocks to improve network performance.
As filter is the basic unit in CNNs, Yang et al. [20] recently
used re-designed Lego filters to accelerate convolutions, which
achieved state-of-the-art performance. Despite the success of
deep compression on computer vision, the primary use of
the aforementioned models mainly lies in image or video
tasks, which have seldom been directly adopted to perform
HAR. In the next section, we will describe the convolution
operation constructed by Lego filters, and then present the
entire architecture of the lightweight CNN used in HAR.

III. MODEL

In this section, the lightweight CNN architecture with
Lego filters termed as Lego CNN is proposed to handle the
unique challenges existed in HAR. The challenges in HAR [1]
problem usually include (i) processing units (i.e., filters) in
CNN need applied along temporal dimension and (ii) sharing
the units in CNN among multiple sensors. For HAR, we deal
with multiple channels of time series signals, in which the
traditional CNN cannot be used directly. The sliding window
strategy is adopted to segment the time series signals into a
collection of short pieces of signals. Hence the signals are split
into windows of a fixed size and an overlap between adjacent
windows is tolerated for preserving the continuity of activities.
An instance handled by CNN is a two-dimensional matrix with
r raw samples, in which each sample contains multiple sensor
attributes observed at time t. Here, r is the number of samples
per window. For comparison, the baseline model is built as a
typical deep CNN, which comprises of convolutional layers,
dense layers and softmax layers. Our research aims to realize
lightweight CNN for the practical use of HAR. Following the
settings of Yang et al. [20], the ordinary filters are replaced
with a set of compact Lego filters, that are often of much lower
dimensions. As filter is the basic unit in CNN, the ordinary
convolution filters stacked by a set of lower-dimensional Lego
filters can lead to an efficient model. Instead of manually
stacking these Lego filters, we realize convolution operation by
simultaneously optimizing Lego filters and their combination
(i.e., binary masks) at the training stage of deep neural net-
works. For binary masks, gradient-based learning is infeasible.
Alternatively, the Straight-Through-Estimator (STE) is used in
the discrete optimization problem with gradient descent due to
its effectiveness and simplicity. As these filter modules share
the same set of Lego filters but with different combinations,
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Fig. 1. Overview of the model framework with Lego CNN for HAR. This
figure shows how the three-stage pipeline split-transform-merge oper-
ates on input feature maps. X is the input feature map, and Lego Filters
are convolved with different segmented fragments from X, which result
in a set of Feature Maps. Y is generated by merging the intermediate
feature maps.

without loss of generality, a classical split-transform-merge
three-stage strategy is adopted to further accelerate convolu-
tions by exploiting intermediate feature maps. An overview of
the proposed lightweight HAR system is shown in Fig. 1.

A. Lego Filters for Constructing CNNs

As mentioned above, CNN has achieved the state-of-the-art
performance in HAR. Without loss of generality, a common
convolutional layer with n filters can be represented as F =
{ f1, f2, . . . , fn} ∈ Rd×1×c×n , where d × 1 is the size
of filters and c is the channel number. The conventional
convolution operation can be represented as: Y = X T F , where
X and Y are the input and output feature maps of this layer.
The filters F can be solved by using the standard feed-forward
and back-propagation method. As shown in the bottom right
corner of Fig. 1, F is replaced with a set of smaller filters
B = {b1, b2, . . . , bk} ∈ Rd×1×c̃×k with fewer channels
(c̃ � c), namely Lego filters [20], which can be represented
as: F = BM, where M is a linear transformation of stacking
Lego filters. F is used as a filter module, as it is assembled
with Lego filters. Each Lego filter can be utilized for multiple
times in constructing a filters module F. Hence, convolutional
filters constructed by these Lego filters B of fewer parameters
can be solved from the following optimization problem:

B̂ = argmin
B

1

2
‖Y, L (B M, X)‖F

2 (1)

where ‖·‖F is the Frobenius norm for matrices.

B. Combining Lego Filters and Optimization

For the use of Lego filters, the X is split into o=c/c̃
fragments [X1, . . . , Xo], and k Lego filters are stacked for
a matrix B = [vec (b1) , . . . , vec (bk)] ∈ Rd×1×c̃×k . Note
that each output feature map is the sum of convolutions on
all fragments of the input feature maps. e.g., The j-th feature
map Y j formed by the j-th Lego convolutional filter can be
formulated as:

Y j =
o∑

i=1

X T
i

(
B M j

i

)
(2)

where M j
i ∈ {0, 1}k×1 and ‖M j

i ‖1 = 1 is a binary mask.
As there is the constraint on M with ‖M j

i ‖1 = 1, only one
Lego filter can be selected from B for the i-th fragment of

the input feature maps, which ensure that Lego filters can be
concatenated brick by brick. Therefore, the above optimization
problem for simultaneously learning Lego filters and their
combination in Eq. 1 can be rewritten as:

min
B,M j

o∑
i=1

1

2
‖Y j − X T

i

(
B M j

i

)
‖2

F

s.t . M j
i ∈ {0, 1}k×1 , ‖M j

i ‖1 = 1, i = 1, . . . , o (3)

Evidently, M is a binary matrix which is difficult to optimize
using Adam. To solve the optimization problem, the object
function can be relaxed by introducing N ∈ Rn×o×k whose
shape is equivalent to M. For model training, M can be
binarized from N as follows:

M j
i,k =

{
1, i f k = arg max N j

i

0, otherwi se

s.t . j = 1, . . . , n, i = 1, . . . , o (4)

The gradient ΔN for float parameters N is equivalent to the
gradient ΔM . The STE is used for back-propagating gradients
throughout the quantitation function [20], [21].

C. More Efficient Convolution

In the previous procedure, convolution filters are firstly
constructed by a set of Lego filters, and then applied on input
feature maps. As these filter modules share the same set of
Lego filters but with different combinations, repeated computa-
tions will be introduced during the convolution stage. A classi-
cal split-transform-merge strategy [17], [20] is used to remove
these repeated computations and further accelerate convolu-
tions. This split-transform-merge pipeline is introduced as
follows:

1. Split: The X is split into o fragments [X1, . . . , Xo],
in which each fragment Xi will be the feature map with
smaller channels to be convolved with s set of Lego
filters.

2. Transform: The o fragments are convolved with each
individual Lego filter, i.e., which leads to o ×k interme-
diate feature maps in total. The convolution process can
be represented as:

Ii j = X T
i B j (5)

3. Merge: From the perspective of matrix, Eq. 2 can be
easily rewritten as:

Y j =
o∑

i=1

(
X T

i B
)

M j
i (6)

where the X T
i B is the intermediate feature map I.

To remove repeated computations and accelerate con-
volutions, M extracts intermediate feature maps from I
and merge them to produce the output feature maps Y.

D. Lego CNN With Local Loss

In order to get better performance, we propose a new
layer-wise training Lego CNN using local loss for sensor based
HAR. For local loss functions, the computational graph is
detached after each hidden layer to prevent standard backward
gradient flow. Referring to previous work using layer-wise loss
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functions [22], the global loss in Lego CNN is replaced with
two local loss functions [22], [36]. One of the local loss signal
is implemented by the cross entropy between a prediction of
local linear classifier and the target, which is called prediction
loss L pred_loss . It can be expressed as follows:

L pred_loss = Cross Entropy
(

Y, W T X
)

(7)

where W denotes a linear classifier, X is the output of a
forward-flow convolutional layer and Y denotes the label
matrix of one-hot encoded targets.

The other loss function is similarity matching loss [36],
which is formulated as follows:

Lsim_loss = ‖S (C (X; w)) − S (Y )‖2 (8)

where C represents a convolutional operation with kernel size
3*3, stride 1 and padding 1. The S(*) denotes the adjusted
cosine similarity matrix operation.

Finally, the weighted combination of the above loss
functions can be represented as:

Llocal_loss = (1 − α) L pred_loss + αLsim_loss (9)

in which α is a weighting factor and is set to 0.99 according
to our previous work [22].

IV. EXPERIMENT

The experiments are conducted on five public datasets
including UCI-HAR dataset, OPPORTUNITY dataset,
UNIMIB-SHAR dataset, PAMAP2 dataset and WISDM
dataset, which is typical for HAR in ubicomp (described
below). The CNN composed of several convolutional layers
and one fully connected layer was used as the baseline to
evaluate whether the Lego filters can reduce the number of
parameters while keeping performance. Actually, the baseline
CNN structure is commonly used, which is constituted
by (i) a convolution layer that convolves the input or the
previous layer’s output with a set of kernels to be learned;
(ii) a rectified linear unit (ReLU) layer that maps the output
of the previous layer by the function relu (ν) = max (ν, 0);
(iii) a normalization layer that normalizes the values of
different feature maps in the previous layer. As it is hard
to know all specific CNN structures used in other HAR
literatures on five benchmark datasets, the baseline CNN is
trained via tuning hyper-parameters, which achieve almost the
same accuracy obtained in these HAR literatures [30], [37]
[38]. We conclude that the baseline CNN has comparable
feature extracting and classification ability. The performance
is compared between proposed CNN, baseline CNN and other
state-of-the-art in the experiment part. Batch normalization
was applied before each ReLU activation function. Although
there are lots of parameters in the last fully connected layer,
the Lego filters are not used to compress the last layer in
all our experiments. If Lego filters are used to compress
the last layer, many classes would share similar features,
which would inevitably introduce side effects and deteriorate
the classification performance of HAR. The Lego filters are
not applied in the first convolutional layer as the size of
conventional filter is often small in this layer. That is to say,

only the intermediate convolutional layers are compressed
with Lego filters.

The different compression rates are explored throughout
whole experiments. There are two parameters, e.g., o and m,
used to tune compression ratio in Lego CNN. The o is an
integer which indicates the number of fragments input feature
maps are split into, and the m is a decimal smaller than
one which indicates the ratio of Lego filters compared to
the original of each layer, i.e., k

n . Here, it is evident that
the number of Lego filters k should be smaller than the
output channel number n. Since binary matrix M is much
smaller than Lego filters parameters, the compression ratio
for each convolutional layer can approximately be calculated
as n×o

k . Similarly, the theoretical speedup for an optimized
convolution layer using smaller Lego filters can approximately
be calculated as n

k . However, as mentioned above, the Lego
filters have not been applied for each layer and the actual
compression ratio cannot attain the aforementioned theoretical
upper limit.

In a fully supervised way, the network parameters are
optimized by minimizing the cross-entropy loss function with
mini-batch gradient descent using an Adam optimizer. The
network will be trained at least 500 epochs. The initial
learning rate and batch size were set according to different
datasets. Since no clear consensus exists on which sliding
window size should be preferably employed for deep learning,
for comparison, the same values used in previous case of
success are selected. As human activity datasets are often
highly unbalanced, the overall classification accuracy is not
an appropriate measure to evaluate HAR tasks. Requiring per-
formance metrics that are independent of the class distribution,
we evaluate the models using the weighted F1 score [32]:

F1 = 2
∑ Nc

Ntotal

Pecisionc × Recallc

Pecisionc + Recallc
(10)

which considers the correct classification of each class equally
important. Nc is the number of samples in class c, and
Ntotal is the total number of samples. The experiments are
repeated 5 times and the mean F1 score is used as the final
measure to evaluate model performance. The model training
and classification are run in PyTorch (Paszke et al, 2017 [39])
deep learning framework on a machine with an Intel i7-6850K
CPU, 32GB RAM and NVIDIA RTX 2080 Ti GPU.

1) The OPPORTUNITY Dataset [25]: The dataset contains a
set of complex naturalistic activities collected in a sensor-rich
environment, which is comprised of the readings of various
motion sensors recorded:

• Body-worn sensors: 7 inertial measurement units, 12 3D
acceleration sensors, 4 3D localization information;

• Object sensors: 12 objects with 3D acceleration and 2D
rate of turn;

• Ambient sensors: 13 switches and 8 3D acceleration
sensors.

During the recordings, participants were asked to perform
a session five times with activities of daily living (ADL) and
one drill session. The dataset is publicly available and can be
downloaded from the UCI Machine Learning repository, which
has been used in an open activity recognition challenge. In this
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Fig. 2. Overview of the loss of different compression for OPPORTUNITY.

article, we train and test our models on the same subset used
in the OPPORTUNITY challenge, which is composed of the
recordings of 4 subjects including only on-body sensors. Data
is preprocessed at a frequency of 30Hz from 12 locations on
the body, and annotated with 18 mid-level gesture annotations.

In the experiment, for each subject, data from 5 different
ADLs is recorded. ADL1, ADL2 and ADL3 from subject 1,
2 and 3 is used as our training set via replicating the most
popular recognition challenge with ADL4 and ADL5 from
subject 4 and 5 in our test set. For frame-by-frame analysis,
the sliding windows size is 64 and the sliding step is 8. The
resulting training set contains approximately 650k samples.
For the dataset, the shorthand description of the baseline
CNN is C(128)→C(256)→C(384)→FC→Sm, where C(Ls )
denotes a convolutional layer with Ls feature maps, FC a
dense layer and Sm a softmax classifier. The two intermediate
convolutional layers with Lego filters are used. The batch size
is set to 300 and learning rate was set constant to 5e-4.

As there is a notable imbalance in the OPPORTUNITY
dataset where the NULL class represents 72.28%, the model
performance is evaluated considering the NULL class.
Fig. 2 shows the effect of increasing compression ratio on
the performance with Lego CNN(o = 2, m = 0.5), Lego
CNN(o = 4, m = 0.5), Lego CNN(o = 2, m = 0.25), and
Lego CNN (o = 4, m = 0.25) architectures. As mentioned
above, different o and m is set to change compression ratio.
These results of the baseline CNN approach those obtained
previously by Yang et al, 2015 [28] using a CNN on raw signal
data. From the results in Fig. 2, it can be seen that the baseline
CNN consistently outperforms Lego CNN, which agrees well
with our motivation. Compared with the baseline CNN, there
is no significant decrease in performance on test data with
increasing compression ratio. Table I presents classification
accuracy, memory and FLOPs for the different compression
rates on the OPPORTUNITY dataset. It can be seen that
the baseline CNN achieves 86.10% accuracy. When compared
to the best submissions using CNN for the OPPORTUNITY
challenge, accuracy drops less than 1.6%, e.g., Lego CNN
(o = 4,m = 0.25). However, it can be noticed that Lego CNN
offers a striking performance improvement: there is a 7.6x
compression ratio and 3x speedup in terms of FLOPs. In other
words, the Lego filters can efficiently compress networks

TABLE I
PERFORMANCE OF DIFFERENT COMPRESSION FOR OPPORTUNITY

Fig. 3. Overview of the loss of different compression for PAMAP2.

without increasing any computational burden, which is suitable
for HAR applications on mobile devices.

2) The PAMAP2 Dataset [23]: The dataset consists of
18 different physical activities such as house cleaning, watch-
ing TV, rope jumping, playing soccer, etc. As instructed, all
subjects performed 12 different activities, and some of the
subjects performed 6 optional activities. The collector aggre-
gated data from 9 subjects wearing 3 inertial measurement
units (IMUs) and a heart rate monitor, where the 3 IMUs were
placed over the wrist, chest and ankle on the dominant. The
heart rate is recorded at a sampling frequency of 9Hz. The
IMUs are sampled at a frequency of 100Hz.

For comparison, the accelerometer signals are subsampled
to 33.3Hz, which has been used in other HAR literatures. To
generate a larger number of segments, we sliced the sensor
data using sliding window size corresponds to 5.12 s, which
allows a 78% overlapping rate. For the PAMAP2 dataset,
we randomly split 80% for training and 20% for test.
Considering that there are many categories of dataset,
we increase the number of convolution layers and the
shorthand description of the baseline CNN is C(128)→
C(256)→C(384)→C(512)→C(512)→FC→Sm including 5
convolutional layers and 1 fully connected layer. The batch
size is set to 300 and the initial learning rate was set to 1e-4.
The learning rate is reduced by a factor of 0.1 after 100 epochs.

In Fig. 3, the performance of the different compression
ratio is evaluated on the PAMAP2 dataset.The baseline CNN
approach cannot offer better results than the Lego CNN
(o = 2, m = 0.5). Table II shows the relationship between
performance and two parameters. It can be seen that the
baseline CNN achieves 91.26% accuracy, which approaches
the previous reported results using a CNN (Yang et al., 2018
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TABLE II
PERFORMANCE OF DIFFERENT COMPRESSION FOR PAMAP2

[40]). The Lego CNN with a range of o and m systematically
outperforms baseline in terms of memory and FLOPs. The
Lego CNN(o = 2, m = 0.5) presents the best accuracy,
which achieves 0.14% improvement on baseline. Note that the
baseline network has about 2.8 times more parameters than the
Lego CNN. As compression ratio increases, the performance
of the model slightly decreases. When setting o = 4 and
m = 0.25, we are able to achieve less than 1% accuracy drop
with a compression ratio of 5x and a speedup of 3.9x. That
is to say, without any extra cost, we can train a lightweight
CNN using Lego filters with almost the same accuracy.

3) The UCI-HAR Dataset [3]: The UCI-HAR dataset has been
collected from a group of 30 subjects within an age bracket
of 19-48 years. Each subject, wearing a Samsung Galaxy S II
smartphone on the waist, was asked to perform six activities
including walking, walking_upstairs, walking_downstairs, sit-
ting, standing and laying. The three axial linear acceleration
and three axial angular velocity were recorded at a constant
sample rate of 50Hz by using the embedded accelerometer and
gyroscope in the smartphone. The dataset has been labeled
manually by video-recorded.

The accelerometer and gyroscope signals are pre-processed
by applying noise filters. In particular, the accelerometer
signals are composed of gravitational and body motion com-
ponents, where the gravitational force is assumed to have
only low frequency components. Therefore, the above two
components were further separated by using a Butterworth
low-pass filter with 0.3 Hz cutoff frequency. The sensor
signals were then sampled by using a fixed-width sliding
windows of 128 and 50% overlap (2.56s/window). For the
experiment, the dataset has been randomly partitioned into
two sets where 70% of the subjects was selected for generat-
ing training data and 30% for test data. For the UCI-HAR
dataset, the shorthand description of the baseline CNN is
C(128)→C(256)→C(384)→FC→Sm. The model was trained
using Adam optimizer with mini-batch size of 200. The
learning rate is reduced by a factor of 0.1 after 100 epochs,
and the initial learning rate was set to 4e-4.

Using the above experiment configurations, we then increase
the compression ratio. Fig. 4 shows the effect of increas-
ing compression ratio on performance. Compared with the
baseline CNN, the Lego CNN(o = 2, m = 0.5) achieves
higher performance on the test set with less parameters. The
Lego CNN is compared with the state-of-the-art CNN based
methods in HAR, as seen in the Table III. The best published
results on this task to our knowledge is 97.62% using CNN
combined with hand-crafted features (Ignatov, 2018 [37]).
To make the comparison more fair, we train the baseline
CNN without using other techniques, which achieves 96.23%

Fig. 4. Overview of the loss of different compression for UCI-HAR.

TABLE III
PERFORMANCE OF DIFFERENT COMPRESSION FOR UCI-HAR

accuracy, almost in line with the results using CNN alone by
Jiang and Yin [29]. Comparison shows that the Lego CNN
(o = 2, m = 0.5) even outperforms the baseline CNN,
achieving an accuracy of 96.27% with a compression ratio
of 2.7x and a speedup of 2x. We argue that if parameters are
not too few, parameters are enough to learn comparable or even
better results. There is a continuous decrease on performance
as compression ratio increases. Accuracy only drops 0.73%
than the baseline CNN accompanied by a compression ratio
of 5.2x and a speedup of 3.9x, which is acceptable for the
mobile HAR task.

4) The UNIMIB-SHAR Dataset [24]: This dataset is a new
dataset which includes 11,771 samples for the use of HAR and
fall detection. The dataset aggregates data from 30 subjects
(6 male and 24 female whose ages ranging from 18 to
60 years) acquired using a Bosh BMA220 3D accelerometer
of a Samsung Galaxy Nexus I9250 smartphone. The data
are sampled at a frequency of 50 Hz, which is commonly
used in the related literature for HAR. The whole dataset
consists of 17 fine grained classes, which is further split
into 9 types of ADLs and 8 types of falls. The dataset also
stores related information used to select samples according
to different criteria, such as the type of ADL performed,
the gender, the age, and so on.

Unlike OPPORTUNITY, there is no any NULL class in the
UNIMIB SHAR dataset, which remains fairly balanced. For
this dataset, the sliding windows of data and their associated
labels are directly produced with a fixed length T = 151, which
corresponds to approximately 3s. The sliding step length is
set to 3. The dataset contains 11,771 time windows of size
151*3 in total. In the experiment, the dataset is randomly
divided into two parts where 70% was selected to generate
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Fig. 5. Overview of the loss of different compression for UNIMIB-SHAR.

TABLE IV
PERFORMANCE OF DIFFERENT COMPRESSION FOR UNIMIB-SHAR

training data and 30% test data. For the UNIMIB-SHAR
dataset, the network structure of the baseline of CNN is
C(128)→C(256)→C(384)→FC→Sm, which has 3 convolu-
tional layers and 1 fully connected layer. The model was
trained using Adam optimizer with mini-batch size of 200,
and the learning rate was set to 5e-4.

Fig. V demonstrates the performance of Lego CNN with
a range of compression ratio compared with the baseline
CNN. The Lego CNN(o = 2, m = 0.5) achieves almost the
same accuracy with the baseline CNN, and there is a steady
slight decrease in performance on test data with increasing
compression ratio. Table IV demonstrates the performance of
our model compared with the state-of-the-arts using CNN in
terms of accuracy, compression ratio, memory, and FLOPs.
To our knowledge, the best result reported using CNN on this
dataset is 74.66% (Li et al., 2018 [38]), which is consistent
with our results of CNN. It can be noticed that accuracy of
Lego CNN(o = 2, m = 0.5) only drops 0.05% less than that
of the baseline CNN. Accuracy keeps to be almost the same
with 3.1x compression ratio. Meanwhile, FLOPs reduced a lot
in the model by approximately 2x. In the extreme compression
situation of 6.6x, the Lego CNN with coefficient o = 4,
m = 0.25 still could maintain performance about 72.80%
accuracy, compared to 74.46% accuracy of the baseline CNN.
From results in the table, the Lego CNN is more portable
alternative to the existing state-of-the-art HAR applications
using CNN.

5) The WISDM Dataset [26]: This WISDM dataset contains
1098213 samples which belong to 29 subjects. One triaxial
accelerometer embedded in mobile phones with Android
OS is used to generate data. In a supervised condition,
the smartphones were placed in a front leg pocket of

Fig. 6. Overview of the loss of different compression for WISDM.

TABLE V
PERFORMANCE OF DIFFERENT COMPRESSION FOR WISDM

the dominant. Each subject performed 6 distinctive human
activities of walking, jogging, walking upstairs, walking
downstairs, sitting and standing. The acceleration signals were
recorded at a constant sampling rate of 20Hz (Kwapisz et al.
2011 [26]). In the experiment, the accelerometer signals
were preprocessing by the sliding window technique. The
sliding windows size was set to 10s and the sliding step
length was set to 1s, which allows a 90% overlapping
rate. The whole WISDM dataset was randomly split into
two parts where 70% was selected to generate training data
and the rest test data. The shorthand description of the baseline
CNN is C(64)→C(128)→C(256)→C(256)→C(384)→FC→Sm,
which has 5 convolutional layers and 1 fully connected layer.
The network will be trained with the batch size of 200 using
the conventional Adam optimizer. The initial learning rate is
set as 0.001, which will be reduced by a factor of 0.1 after
each 100 epochs.

As seen in Fig. 6, there is no significant decrease on
performance of the Lego CNN with moderate compression
rates. According to the test curve, the Lego CNN(o = 2,
m = 0.5) even is able to achieve higher performance than
baseline. The performance of Lego CNN is compared with
the baseline CNN on the WISDM dataset. To our knowledge,
the best published results using a CNN on this dataset is
98.2% using spectrogram signals instead of raw acceleration
data (Ravi et al., 2016 [41]; Alsheikh et al., 2015 [42]).
Since main research motivation in the article is to discuss
lightweight CNN using Lego filters, for simplicity, we still
train the baseline CNN with raw acceleration data, which
achieve 97.30% accuracy, slightly lower than above results.
From results in the Table V, what you can see is that the
Lego CNN(o = 2, m = 0.5) achieves 0.21% performance
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Fig. 7. Overview of the loss of Lego-Local Loss for UNIMIB-SHAR.

TABLE VI
PERFORMANCE WITH LEGO-LOCAL LOSS FOR UNIMIB-SHAR

TABLE VII
ACCURACY WITH LEGO-LOCAL LOSS FOR DIFFERENT DATASETS

improvement on baseline with a compression ratio of 3.1x and
a speedup of 2x. And it is worth mentioning that, even in the
extreme situation, the Lego CNN(o = 4, m = 0.25) achieves
only 1% accuracy drop than baseline with a compression ratio
of 6.8x and a speedup of 4x.

6) Lego CNN With Local Loss: Fig.7 illustrates that the
layer-wise training Lego CNN (under different o, m) is able
to consistently outperform baseline for test error on the
UNIMIB-SHAR dataset. As stated in our previous article [22],
the local loss can play a regulating effect, which leads to final
higher training errors. Thus, the proposed method may achieve
lower test errors, due to a better generalization ability. When
compared to our previous results using local loss, there is no
significant decrease on accuracy, even though the number of
parameters and FLOPs was much smaller (Table VI). Under
different compression ratio, the layer-wise training Lego CNN
with local loss is also compared with baseline as well as local
loss method, on several other benchmark datasets. As can be
seen in Table VII, the results imply that the new model is
smaller, faster and more accurate.

Fig. 8. Confusion matrix for PAMAP2 dataset between the baseline and
the Lego CNN. From top to bottom, confusion matrix for the baseline,
Lego CNN(o = 2, m = 0.5), and Lego CNN(o = 4, m = 0.25).

V. DISCUSSION

Throughout the whole experiments, there are two tunable
parameters in Lego CNN, in which o indicates the number of
fragments input feature maps are split into and m indicates
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Fig. 9. Screenshot of real implementation with Lego CNN model.

the ratio of Lego filters compared to the original of each
layer, i.e., k

n . Different compression ratios can be achieved
by setting o or m. As compression ratio grows, accuracy
often drops, which will lead to a decrease on memory or
FLOPs. Thus there is a trade-off between accuracy, memory
and FLOPs. Actually, memory can directly indicates the
final compression performance of the model. Under the same
memory budget, the experiment result show that higher o with
much more fragments still achieve almost the same accuracy,
but takes much more FLOPs. For example, the Lego CNN
(o = 4, m = 0.5) can achieve comparable accuracy with
the Lego CNN(o = 2, m = 0.25), but costs almost twice
FLOPs. With the same memory, one should choose smaller
o to balance memory and FLOPs, which is also in line with
Yang et al’s [20] results on visual tasks.

To analyze the results in more detail, we show the confusion
matrices for the PAMAP2 dataset using the baseline CNN,
Lego CNN(o = 2, m = 0.5) and Lego CNN(o = 4,
m= 0.25), as can be seen in Fig. 8. The three confusion matri-
ces indicate that many of the misclassification are due to con-
fusion between these activities, e.g., “Ascending stairs” and
“Cycling”, ”Rope jumping” and “Walking. This is because the
signal vibration in these two cases are similar. From the results,
it can be observed that the Lego CNN can perform comparably
well with the baseline CNN. The confusion matrices show
similar outputs varying slightly in the classification accuracy.
There is no significant decrease on classification performance
as compression ratio increases.

Finally, in order to evaluate the performance improvement
for the practical implementation, we test the proposed
deep learning algorithms on an Android smartphone.
As smartphones are more convenient and easier to use, they
have been utilized in various HAR tasks, which can be seen as
a particular case of modern wearable devices. The HAR APP
system presented in [43] was used as a reference point for
the evaluation, which is a smartphone-based application for
mobile activity recognition. A screenshot of the app’s main
window is shown in Fig 9. Our experiment was implemented
on a Huawei Honor 20i device with the Android OS(10.0.0).

TABLE VIII
MODEL INFERENCE TIME FOR DIFFERENT COMPRESSION

Several PyTorch trained models with different compression
ratio are used on the WISDM dataset and then deployed
to build an Android application that can perform on-device
activity recognition. The model is converted into pt file and
the PyTorch Mobile is added as a Gradle dependency(Java).
The classifications can be performed by loading the saved
model with PyTorch Mobile. As shown in Table VIII, due
to memory access and other overheads, it can conclude to
that the Lego CNN(o = 4, m = 0.25) with 4x theoretical
complexity reduction usually results in a 1.7x actual speedup
in the implementation.

VI. CONCLUSION

Recently, deep CNNs have achieved state-of-the-art
performance on various HAR benchmark datasets, which
require enormous resources and is not available for mobile
and wearable based HAR. Although a series of lightweight
structure designs have demonstrated their success in reducing
the computational complexity of CNN on visual tasks. They
often rely on special network structures, which have been
seldom directly adopted for HAR. On the other hand, less
complex models such as shallow machine learning techniques
could not achieve good performance. Therefore, it is necessary
to develop lightweight deep CNNs to perform HAR. In the
article, we for the first time proposed a lightweight CNN using
Lego filters for mobile and wearable based HAR tasks. The
conventional filters could be replaced with a set of smaller
Lego filter, which never rely on special network structures. The
STE method is used to optimize the permutation of Lego filters
for a filter module. The three-stage split-transform-merge strat-
egy is utilized to further accelerate intermediate convolutions.
Our main contribution is to propose a lightweight HAR with
smaller Lego filters. The Lego idea can greatly reduce memory
and computation cost over conventional CNN, which is accom-
panied by a slight decrease on performance. To alleviate this,
the local loss is used to train the Lego CNN, which can boost
the performance without any extra cost. Actually, the local
loss may be adding a regularizing effect, which encourages
examples from distinct classes to have distinct representations,
measured by the cosine similarity. This also can be seen as a
kind of supervised clustering [22], [36].

In the article, the proposed method is tested with
smartphones, as well as multiple sensor nodes. To make fair
comparison, we evaluate the performance of the proposed
method on five public benchmark HAR datasets, which can
be classified as both case: the UCI-HAR, UNIMIB-SHAR
and WISDM dataset are collected from smartphones; the
OPPORTUNITY and PAMAP2 dataset are collected from
multiple sensor nodes. In comparison with deployment of
multiple sensors nodes, smartphones are cheaper and easier to
use, which can be seen as a particular case of wearable devices.
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Our research mainly focuses on lightweight deep learning
implementation of mobile and wearable based HAR. In order
to get better insights on the actual system performance,
we evaluate the model performance by using confusion matrix
to associate explicit feature representation. On the whole,
the results on multiple benchmark datasets suggests that the
proposed Lego CNN with local loss is smaller, faster and more
accurate.
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